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March 12, 2025

Perform the solutions individually and send your report until March 31 by email to me. Try to keep
this deadline. However, if you have problems with it, there will be a final deadline on September 30 for
all assignments.

Please send me one pdf-file with your report (alternatively, Word is ok, too), and additionally, please
send me your code in one separate plain-text file (an R-markdown, .rmd, is possible but not required).

Problem 1.1

Let

g(x, y) = −x2 + 10y − 2y3 +
1

2
x2y.

a. Plot the function with a contour plot or a 3-dimensional plot to visualise the function.

b. Compute the gradient analytically. Set the gradient to 0 and solve the equations analytically to
identify candidates for maxima, minima, and saddle points.

c. Compute the Hessian matrix analytically. Determine if it is positive, negative, or indefinite in the
candidate points (if you want to calculate eigenvalues, you can use software for it). What does this
mean for your candidate points identified in b.?

Problem 1.2

Three doses (0.1, 0.3, and 0.9 g) of a drug and placebo (0 g) are tested in a study. Afterward, a dose-
dependent event is recorded. The data of n = 10 subjects is shown in Table 1; xi is the dose in gram; x̃i

is the dose with unit changed to milligram; yi = 1 if the event occurred, yi = 0 otherwise.

xi in g 0 0 0 0.1 0.1 0.3 0.3 0.9 0.9 0.9
x̃i in mg 0 0 0 100 100 300 300 900 900 900
yi 0 0 1 0 1 1 1 0 1 1

Table 1: Data for Problem 1.2

You should fit a simple logistic regression

p(x) = P (Y = 1|x) = 1

1 + exp(−β0 − β1x)
.

to the data, i.e. estimate β0 and β1. One can show that the log likelihood is

g((β0, β1)) =

n∑
i=1

[
yi log{(1 + exp(−β0 − β1xi))

−1}+ (1− yi) log{1− (1 + exp(−β0 − β1xi))
−1}

]

1



and the gradient is

g′(b) =

n∑
i=1

{
yi −

1

1 + exp(−β0 − β1xi)

}(
1
xi

)
.

a. Write a program for an ML-estimator for (β0, β1) using the steepest ascent method with a step-size
halving line search (back-tracking). Problems could turn up later, e.g. when the log is taken from
a value close to 0. If this becomes a problem, try to handle this issue.

b. Plot the log-likelihood function (contour plot) for the observations in Table 1. Compute the ML-
estimator with your function both using gram data (xi, yi) and using milligram data (x̃i, yi). How
many iterations were used in each case? Discuss reasons for that result. Note: to check your
ML-solution, you might use a standard statistical function like the function glm in R.

c. Choose the quasi-Newton with BFGS or the Newton algorithm. Write your own optimisation
program with the chosen algorithm. Run your program for the dataset in Table 1, using both
g-data and mg-data. Report the number of iterations used and compare with the results from b..
If you have chosen the Newton algorithm, you need the Hessian matrix; write how you obtained it
or if you used sources for it, please cite appropriately.

Problem 1.3

We consider the quadratic two-dimensional function

g(x) = −1

2
x⊤Ax, x ∈ IR2.

with a symmetric and positive definite 2 × 2-matrix A. The function g has a maximum at (0, 0)⊤ and
the gradient is g′(x) = −Ax. For A, we consider two different matrices with

A1 =

(
8 1
1 8

)
, A2 =

(
1 0
0 100

)
.

a. Program your own function for accelerated steepest ascent with Polyak’s momentum with fixed step
size α (without backtracking) and fixed momentum parameter β. These two parameters should be
options in your function such that you can test different options. Choose a stopping criterion such
that you have correct results up to around 6 digits. Your function should report the number of
iterations used.

b. Plot a contour plot for the two cases and compute with your programming language the eigenvalues
of the matrices Ai and the condition number κ. For both the steepest ascent and the accelerated
steepest ascent, compute the optimal parameters and the best convergence rate ρ in the two cases.

c. Run the steepest ascent method (i.e. use β = 0 in your function) using a starting value x(0) =
(−4,−2)⊤. Use the optimal value and several other α-values in a grid of 0.01 or 0.02 around the
optimal value. Report if the algorithm successfully found the maximum and how many iterations
were needed for each parameter value. Is the performance best for the theoretically best α-value?

d. Run the accelerated steepest ascent method with Polyak’s momentum. Use the optimal α, β and
some values around them and report convergence and number of iterations. How much does accel-
eration improve performance?
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