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Perform the solutions individually and send your report until March 31 by email to me. Try to keep this
deadline. You will then be assigned to perform a peer-review which you have to hand in until April 14.

If you have problems with it, there will be a final deadline on September 30 for all assignments.

Problem 2.1

Consider a linear regression model y = Xβ + ϵ for a design matrix X ∈ Rn×p of full rank p with n > p.
The interest is in the least squares solution, i.e., the function

g(b) =
1

n
∥Xb− y∥22

should be minimised. Show that g is L-smooth and m-strongly convex. Present expressions for L and m.

Problem 2.2

We consider an ML estimation for simple logistic regression

p(x) = P (Y = 1|x) = 1

1 + exp(−β0 − β1x)
.

a. Program a stochastic gradient descent algorithm with a fixed step size α and a predefined total
number of iterations T for simple logistic regression. Your program should also plot the computed

(β
(t)
0 , β

(t)
1 ) in each iteration t (t = 0, 1, . . . , T ) such that you can monitor the search path.

b. Analyze the dataset logist.txt (homepage; first column is x, second column y) with your algorithm

using the starting value (β
(0)
0 , β

(0)
1 ) = (0.2, 0.5). Choose the total number of iterations T and the

step size α. You might need to test different options first to come to a good choice. Explain why
you have chosen these values T and α.

Problem 2.3

Verify the formula

f(xk) =
1

2
Eω1,...,ωk,ω


1

k
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2
 =
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2k
σ2 +

1

2
σ2, (5.14)

given that the mean of the random variable ω is µ and its variance is σ2. Note that the random variables
ω1, . . . , ωk, ω all follow the same distribution, and all random variables in this expression are independent.
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