

Advanced Computational Statistics – Spring 2025 Assignment for Lecture 4

Frank Miller, frank.miller@liu.se, Department of Computer and Information Science, Linköpings University

April 15, 2025

Perform the solutions individually and send your report **until April 28** by email to me. Try to keep this deadline. However, if you have problems with it, there will be a final deadline on September 30 for all assignments. Please send me one **pdf-file** with your report and additionally, please send me your code in one separate **plain-text file**. Both Problems 4.1 and 4.2 are mandatory.

Problem 4.1

We want to determine the D-optimal design for cubic regression where the independent variable x is allowed to have values between 0 and 10. Four different $x_i \in [0, 10], i = 1, 2, 3, 4$, can be chosen by the experimenter and the proportion of observations done at each x_i is $w_i \ge 0$ with $\sum_{i=1}^{4} w_i = 1$. The D-optimal design maximises

$$\det\left(\sum_{i=1}^{4} w_i \mathbf{f}(x_i) \mathbf{f}(x_i)^{\top}\right), \text{ with } \mathbf{f}(x) = (1, x, x^2, x^3)^{\top},$$

under the restrictions mentioned above.

- a. Determine a matrix **U** and a vector **c** such that the constraints can be written in the form $\mathbf{Uy} \mathbf{c} \ge 0$, where **y** is the vector of parameters to be optimised over.
- b. Determine the D-optimal design using a constrained optimisation function in your programming language, e.g., constrOptim in R. Does the result make sense?
- c. Let $\tilde{g}(\mathbf{y}) = \mu \cdot b(\mathbf{y}) + g(\mathbf{y})$, where $\mu \cdot b(\mathbf{y})$ are log barriers at all constraints and g is the function to be maximised. Program a function for \tilde{g} . The value μ could be a parameter in the function such that you easily can modify it.
- d. Choose some reasonable values for μ and compute the optimal value of g using unconstrained optimisation. For this, you can use an available optimiser in your programming language, e.g., optim in R. Report results for a sequence of decreasing μ , where you use the solution \mathbf{y}^* as starting value for the next μ . Do you obtain similar results as in b. when using small μ ?

Problem 4.2

We consider again as in Problem 3.1 the experiment investigating how the growth of garden cress depends on a (potentially) toxic fertilizer. The data is on the homepage in the file cressdata.txt (columns: observation number, fertilizer concentration, yield).

We want to estimate now a third-degree polynomial (cubic), again using least squares with L_1 -regularisation. In contrast to the penalized objective function in Problem 3.1, we use now the constrained objective function

Minimise
$$g(\boldsymbol{\beta}) = \|\mathbf{X}\boldsymbol{\beta} - \mathbf{y}\|_2^2$$
 subject to $\|\tilde{\boldsymbol{\beta}}\|_1 \le t$, (1)

where **X** is the design matrix with columns 1, fertilizer, fertilizer², fertilizer³, $\tilde{\boldsymbol{\beta}} = (\beta_1, \beta_2, \beta_3)^{\top}$ is the parameter vector without intercept, $\boldsymbol{\beta} = (\beta_0, \beta_1, \beta_2, \beta_3)^{\top}$ is the complete parameter vector and **y** is the yield-data. The constant $t \geq 0$ is now the regularisation constant. t and λ (in Problem 3.1) are related such that a t in the constrained problem corresponds to a λ in the penalised problem which gives the same solution.

Note that now, $t = \infty$ corresponds to the least squares estimation, where the solution for β of the optimisation problem is $(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$.

- a. Write the constraint $\|\tilde{\boldsymbol{\beta}}\|_1 \leq t$ in terms of eight linear constraints $\mathbf{u}_i^\top \boldsymbol{\beta} + c_i \geq 0$ (or as $\mathbf{U}\boldsymbol{\beta} \mathbf{c} \geq \mathbf{0}$ with a matrix \mathbf{U} with 8 rows).
- b. Compute the Lasso-estimate using a constrained optimization function which can handle linear inequality constraints like constrOptim in R for t = 1000, 100, 40, 10. Describe which optimization algorithm is used in your function. Check $\|\tilde{\boldsymbol{\beta}}\|_1$ for the solutions: Is the inequality constraint active or not?
- c. Implement the projected gradient algorithm and solve the constrained optimization problem for t = 1000, 100, 40, 10. Compare with the result in part b.