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Perform the solutions individually and send your report until April 28 by email to me. Try
to keep this deadline. However, if you have problems with it, there will be a final deadline on
September 30 for all assignments. Please send me one pdf-file with your report and additionally,
please send me your code in one separate plain-text file. Both Problems 4.1 and 4.2 are
mandatory.

Problem 4.1

We want to determine the D-optimal design for cubic regression where the independent variable
x is allowed to have values between 0 and 10. Four different xi ∈ [0, 10], i = 1, 2, 3, 4, can be
chosen by the experimenter and the proportion of observations done at each xi is wi ≥ 0 with∑4

i=1wi = 1. The D-optimal design maximises

det

(
4∑

i=1

wif(xi)f(xi)
⊤

)
, with f(x) = (1, x, x2, x3)⊤,

under the restrictions mentioned above.

a. Determine a matrix U and a vector c such that the constraints can be written in the form
Uy − c ≥ 0, where y is the vector of parameters to be optimised over.

b. Determine the D-optimal design using a constrained optimisation function in your pro-
gramming language, e.g., constrOptim in R. Does the result make sense?

c. Let g̃(y) = µ · b(y) + g(y), where µ · b(y) are log barriers at all constraints and g is the
function to be maximised. Program a function for g̃. The value µ could be a parameter
in the function such that you easily can modify it.

d. Choose some reasonable values for µ and compute the optimal value of g using uncon-
strained optimisation. For this, you can use an available optimiser in your programming
language, e.g., optim in R. Report results for a sequence of decreasing µ, where you use
the solution y∗ as starting value for the next µ. Do you obtain similar results as in b.
when using small µ?
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Problem 4.2

We consider again as in Problem 3.1 the experiment investigating how the growth of garden cress
depends on a (potentially) toxic fertilizer. The data is on the homepage in the file cressdata.txt
(columns: observation number, fertilizer concentration, yield).

We want to estimate now a third-degree polynomial (cubic), again using least squares with
L1-regularisation. In contrast to the penalized objective function in Problem 3.1, we use now
the constrained objective function

Minimise g(β) = ∥Xβ − y∥22 subject to ∥β̃∥1 ≤ t, (1)

where X is the design matrix with columns 1, fertilizer, fertilizer2, fertilizer3, β̃ = (β1, β2, β3)
⊤

is the parameter vector without intercept, β = (β0, β1, β2, β3)
⊤ is the complete parameter vector

and y is the yield-data. The constant t ≥ 0 is now the regularisation constant. t and λ (in
Problem 3.1) are related such that a t in the constrained problem corresponds to a λ in the
penalised problem which gives the same solution.

Note that now, t = ∞ corresponds to the least squares estimation, where the solution for β
of the optimisation problem is (X⊤X)−1X⊤y.

a. Write the constraint ∥β̃∥1 ≤ t in terms of eight linear constraints u⊤
i β + ci ≥ 0 (or as

Uβ − c ≥ 0 with a matrix U with 8 rows).

b. Compute the Lasso-estimate using a constrained optimization function which can handle
linear inequality constraints like constrOptim in R for t = 1000, 100, 40, 10. Describe
which optimization algorithm is used in your function. Check ∥β̃∥1 for the solutions: Is
the inequality constraint active or not?

c. Implement the projected gradient algorithm and solve the constrained optimization prob-
lem for t = 1000, 100, 40, 10. Compare with the result in part b.
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