
Advanced Computational Statistics
Lecture 2 – Stochastic gradient based optimisation

Sebastian Mair
https://smair.github.io/
Division of Statistics and Machine Learning
Linköping University

March 12, 2025

0

https://smair.github.io/

Recap: Lecture 1

• Focus on unconstrained optimization
• Second-order methods (Newton, Quasi-Newton)
• First-order method: gradient ascent
• Properties of functions

• convex f((1− α)x+ αy) ≤ (1− α)f(x) + αf(y)
• strong-convex f(y) ≥ f(x) +∇f(x)T(y− x) + m

2 ∥x− y∥22
• L-smooth ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥
• gradient ascent for max., gradient descent for min.

1

Gradient Descent

1. Get function f with gradient ∇f and step-size αk
2. Initialize x0

3. For k = 1 to . . .

4. xk+1 = xk − αk∇f
(
xk
)

Theorem
Suppose that f is convex and L-smooth, and suppose that minx∈Rn f(x) has
solution x⋆. Then the steepest-descent method with step-length αk =

1
L generates

a sequence
{
xk
}∞
k=0 that satisfies

f
(
xT
)
− f (x⋆) ≤ L

2T
∥∥x0 − x⋆

∥∥2 , T = 1, 2,

2

Literature

The majority of this lecture is based on
the following book:

Wright, S. J. and Recht, B. (2022).
Optimization for data analysis.
Cambridge University Press.

3

Lecture 2

Recommended reading: Sections 5.1-5.5 (and 6)

Today:

• Stochastic gradient descent (SGD)
• SGD in deep learning
• Differential private SGD
• Coordinate descent

4

Stochastic gradient descent (SGD)

Motivation

Consider the minimization of f : Rn → R.

Assume f to be convex and smooth.

Many interesting objective functions are of the following form

f(x) = 1
N

N∑
i=1

fi(x) with ∇f(x) = 1
N

N∑
i=1
∇fi(x). (5.5)

Examples include linear regression and logistic regression.

Recall: The sum of convex functions is convex!

5

Motivation

The problem is that running gradient descent

xk+1 = xk − αk∇f
(
xk
)
, k = 0, 1, 2, . . . (3.2)

requires the computation of the gradient ∇f(x) which might be expensive in the
large-scale case (meaning that either N or n is very large).

Central question:

Is it possible to approximate the gradient ∇f(x)?

Ideas:

(i) Approximate ∇f (think of a sum) using a subset of terms (shrink N)
(ii) Approximate ∇f (think of a vector) using a subset of dimensions (shrink n)

6

Stochastic Gradient Descent

Idea: Use g(x, ξ) ∈ Rn instead of ∇f(x) which is a function of x and a random
variable ξ such that

∇f(x) = Eξ[g(x, ξ)]. (5.1)

Some observations:

• We obtain an unbiased estimate of ∇f(x).
• Descent direction is in expectation equal to the one in gradient descent.
• Ideally, computing g(x, ξ) is computationally cheaper than computing ∇f(x).
• We cannot rely on a fixed step-length of αk =

1
L anymore. Why?

How to choose g(x, ξ)?

7

Stochastic Gradient Descent

We could set

g(x, ξ) = ∇f(x) + ξ (5.3)

which is unbiased for E[ξ] = 0.

• No computational savings!
• Relevant in differential privacy!

More later…

8

Stochastic Gradient Descent

Incremental gradient method

• Let ξ determine an index ik ∈ [N] = {1, 2, . . . ,N} and set g(x, ξ) = ∇fik(x).
Thus, if ξ has a uniform distribution over [N], we retain unbiasedness:

Eξ[g(x, ξ)] =
n∑
i=1

1
N∇fi(x) = ∇f(x).

• Alternatively, we could also cycle through the components iteratively, i.e.,
setting ik = (kmodN) + 1 for k = 0, 1, 2,

• In both cases, we approximate the sum of gradients in Equation (5.5) by only
a single term!

• The convergence analysis of the former is straightforward and the latter one
is more involved and the guarantees are weaker.

9

Stochastic Gradient Descent

1. Get function f and step-sizes αk
2. Initialize x0

3. For k = 1 to . . .

4. Sample ξ and obtain g(xk, ξ)
5. xk+1 = xk − αkg

(
xk, ξk

)
Consider the cost per iteration:

• Gradient descent has O(Nn) per iteration.
• Stochastic gradient descent has only O(n).

Motivations and examples from machine learning such as the perceptron
classifier and the general framework of empirical risk minimization are
considered in Sections 5.1.3 and 5.1.4 for the interested reader. 10

Example: Perceptron classifier

Input data: {a1,a2, . . . , aN}

Targets: yi ∈ {±1}

Model: h(a) = xTa

Classifier: signh(a)

Per-point loss: fi(x) = max{−yih(ai), 0}

1. Get function h and step-sizes αk
2. Initialize x0

3. For k = 1 to . . . // Iterations
4. For i = 1 to N // Loop over data set
5. If yih(ai) < 0 // If misclassification
6. xk+1 = xk + αkyiai // Model update 11

Stochastic Gradient Descent: Choosing the step-lengths

How to choose the step-lengths αk?

Online demo: https://fa.bianp.net/teaching/2018/COMP-652/stochastic_gradient.html

Let us consider the following example of computing a mean:

f(x) = 1
2N

N∑
i=1

(x− ωi)
2, (5.11)

where we have data {ωi}Ni=1 ⊂ R and set fi(x) = 1
2(x− ωi)

2.

The gradient per-term is given by ∇fi(x) = x− ωi.

12

https://fa.bianp.net/teaching/2018/COMP-652/stochastic_gradient.html

Stochastic Gradient Descent: Discrete example

• Start with x0 = 0
• Apply incremental gradient
• Step through the indices in order
• Use a step-length of αk =

1
k+1

x1 = x0 − 1
1(x

0 − ω1) = ω1

x2 = x1 − 1
2(x

1 − ω2) =
1
2ω1 +

1
2ω2

x3 = x2 − 1
3(x

2 − ω3) =
1
3ω1 +

1
3ω2 +

1
3ω3

...

xk =
(
k− 1
k xk−1 +

1
kωk

)
=

1
k

k∑
j=1

ωj (5.12)
13

Stochastic Gradient Descent: Discrete example

Some observations:

• αk =
1

k+1 makes sense in this scenario
• Due to

∑∞
k=0

1
k+1 =∞ we can travel arbitrarily far

• αk =
1

k+1 shrink to zero, thus, if we reach a neighborhood of x⋆, we stay there
• Global optimum achieved after N steps
• Works for the incremental case, not for the random one

14

Stochastic Gradient Descent: Continuous example

Let us now consider the continuous version of Equation (5.11)

f(x) = 1
2Eω

[
(x− ωi)

2] , (5.13)

where ω is a random variable with mean µ and variance σ2.

At every SGD step, we sample ωj+1 ∼ p(ω) iid of the previous iterations and take a
step of length 1

j+1 in direction xj − ωj+1.

After k steps, starting from x0 = 0, we have xk as in Equation (5.12)

15

Stochastic Gradient Descent: Continuous example

We now plug this value into Equation (5.13) and obtain

f(xk) = 1
2Eω1,...,ωk,ω


 1
k

k∑
j=1

ωj − ω

2
 =

1
2kσ

2 +
1
2σ

2. (5.14)

For Equation (5.13) we can compute the minimizer directly. We rephrase it as

f(x) = 1
2E
[
(x− ω)2

]
=

1
2E
[
x2 − 2ωx+ ω2] = 1

2x
2 − µx+ 1

2σ
2 +

1
2µ

2

and see that x⋆ = µ is a minimizer. Thus, f(x⋆) = 1
2σ

2. How?

16

Stochastic Gradient Descent: Continuous example

Comparing the minimizer with Equation (5.14) yields

f(xk)− f(x⋆) = 1
2kσ

2 +
1
2σ

2 − 1
2σ

2 =
1
2kσ

2.

Thus, the sequence of differences {f(xk)− f(x⋆)} shrinks like 1
k .

This demonstrates a limitation of stochastic gradient descent:
We cannot expect linear convergence rates in general!

17

Stochastic Gradient Descent: Convergence analysis: Key assumptions

Apply SGD to a convex function f : Rn → R with steps of the form of

xk+1 = xk − αkg(xk, ξk) (5.2)

and search directions g(x, ξ) satisfying condition (5.1), i.e., ∇f(x) = Eξ[g(x, ξ)].

We need to assume bounds on the gradient estimates and thus non-negative
constants Lg and B such that for all x

Eξ

[
∥g(x, ξ)∥22

]
≤ L2g∥x− x⋆∥2 + B2. (5.19)

Remarks:

• This bounds the expectation over ξ for each x!
• When Lg = 0, f cannot be strongly convex over an unbounded domain.

18

Stochastic Gradient Descent: Convergence analysis: Key assumptions

The book considers four cases

• Case 1: Bounded Gradients: Lg = 0
• Case 2: Randomized Kaczmarz: B = 0, Lg > 0
• Case 3: Additive Gaussian Noise
• Case 4: Incremental Gradient

In this lecture, we consider Case 1.

19

Stochastic Gradient Descent: Convergence analysis: Case 1

Case 1 applies to logistic regression. The objective function is

f(x) = 1
N

N∑
i=1
−yixTai + log(1+ exp(xTai)), (5.21)

where the data are {(ai, yi)}Ni=1 with yi ∈ {0, 1} for i ∈ [N].

Following Equation (5.5), we draw ξ uniformly from [N] and

g(x, i) =
(
−yi +

exp(xTai)
1+ exp(xTai)

)
ai.

Thus, Equation (5.19) holds with Lg = 0 and B = supi∈[N] ∥ai∥2. Why?

20

Stochastic Gradient Descent: Convergence analysis

We can measure the error in two ways.

• E[∥x− x⋆∥2], where x⋆ is the solution and the expectation is over all ξk.
This measure is most appropriate when f is strongly convex.

• f(x)− f⋆ can be used when f is convex.

Suitable choices of step-lengths αk in Equation (5.2) depend on Lg and B and so
do the convergence rates.

21

Stochastic Gradient Descent: Convergence analysis

Using (5.2) for updating the iterates, we can expand the distance to x⋆ as follows:

∥xk+1 − x⋆∥2 = ∥xk − αkg(xk, ξk)− x⋆∥2

= ∥xk − x⋆∥2 − 2αk⟨g(xk, ξk), xk − x⋆⟩+ α2
k∥g(x

k, ξk)∥2. (5.23)

In the following, we take the expectation wrt all random variables encountered up
to iteration k (i0, i1, . . . , ik) and analyze each term separately.

Note that xk depends on ξ0, ξ1, . . . , ξk−1 but not ξk.

22

Stochastic Gradient Descent: Convergence analysis

We obtain

E[⟨g(xk, ξk), xk − x⋆⟩] = E
[
Eξk [⟨g(x

k, ξk), xk − x⋆⟩|ξ0, ξ1, . . . , ξk−1]
]

= E
[
⟨Eξk [g(x

k, ξk)|ξ0, ξ1, . . . , ξk−1], xk − x⋆⟩
]

= E
[
⟨∇f(xk), xk − x⋆⟩

]
.

By a similar argument we can bound the last term using Equation (5.19) as

E[∥g(xk, ξk)∥2] = E
[
Eξk [∥g(x

k, ξk)∥2|ξ0, ξ1, . . . , ξk−1]
]

≤ E[L2g∥x− x⋆∥2 + B2].

23

Stochastic Gradient Descent: Convergence analysis

Let us define Ak = E[∥xk − x⋆∥2] and write the expectation of Equation (5.23) as

Ak+1 ≤ (1+ α2
kL

2
g)Ak − 2αkE

[
⟨∇f(xk), xk − x⋆⟩

]
+ α2

kB
2. (5.25)

What follows depends again on the cases where we focus again on the first case.

Due to Lg = 0, Equation (5.25) simplifies to

Ak+1 ≤ Ak − 2αkE
[
⟨∇f(xk), xk − x⋆⟩

]
+ α2

kB
2. (5.26)

24

Stochastic Gradient Descent: Convergence analysis

We define

λk =
k∑

j=0
αj and x̄k =

∑k
j=0 αjxj∑k
j=0 αj

= λ−1
k

k∑
j=0

αjxj. (5.27)

We now analyze f(x̄k) given an initial point x0 and any solution x⋆.

Let D0 = ∥x0 − x⋆∥.

25

Stochastic Gradient Descent: Convergence analysis

After T iterations, we have

E[f(x̄T)− f(x⋆)] ≤ E

λ−1
T

T∑
j=0

αj(f(xj)− f(x⋆))

 (5.28a)

≤ λ−1
T

T∑
j=0

αjE
[
⟨∇f(xj), xj − x⋆⟩)

]
(5.28b)

≤ λ−1
T

T∑
j=0

[
1
2(Aj − Aj+1) +

1
2α

2
j B

2
]

(5.28c)

=
1
2λ

−1
T

 1
2A0 − AT+1 + B2

T∑
j=0

α2
j

 ≤ D2
0 + B2

∑T
j=0 α

2
j

2
∑T

j=0 αj
. (5.28d)

Here, (5.28a) follows from the convexity of f and the definition of x̄T; (5.28b) uses
again the convexity of f; (5.28c) follows from (5.26); and A0 = D2

0.
26

Stochastic Gradient Descent: Convergence analysis

We now consider a fixed step-length αk = α > 0 for all k and show

Proposition
Suppose we run SGD on a convex function f with Lg = 0 for T steps with fixed
step-length α > 0. Define

αopt =
D0

B
√
T+ 1

and θ =
α

αopt
.

Then, we have the following bound

E[f(x̄T)− f(x⋆)] ≤ D2
0 + B2(T+ 1)α2

2(T+ 1)α =

(
1
2θ

−1 +
1
2θ
)

BD0√
T+ 1

. (5.29)

For θ = 1, the bound is tightest and the decrease approx. linear!

The bound critically depends on the choice of α! 27

Stochastic Gradient Descent: Convergence analysis

Consider the case where both B and Lg are non-zero.

Let f be m-strongly convex. Then

Ak+1 ≤
(
1− 2mαk + α2

kL
2
g
)
Ak + α2

kB
2. (5.34)

For a fix step-length α ∈ (0, 2m/L2g), we obtain

Ak+1 ≤
(
1− 2mα+ α2L2g

)k D0 +
αB2

2m− αL2g
. (5.35)

=⇒ Even for large k, we get trapped in a ball around the optimum.

Idea: Reduce the radius of the ball by reducing α!

28

SGD in deep learning

Computational challenge 2: N is big

At each optimization step we need to compute the gradient

d(t) = ∇θJ(θ(t)) =
1
N

n∑
i=1
∇θL(xi, yi,θ(t)).

Computational challenge: N big
We typically use a lot of training data N for training the neural network.
Computing the gradient is costly.

Solution: For each iteration, we only use a small part of the data set to compute
the gradient d(t). This is called the stochastic gradient descent.

29

Stochastic gradient descent

A big data set is often redundant = many data points are similar.
Training data︷ ︸︸ ︷

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20
y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18 y19 y20

If the training data is big, consider

∇θJ(θ)≈
∑ N

2
i=1∇θL(xi, yi,θ) and ∇θJ(θ)≈

∑N
i=N

2+1∇θL(xi, yi,θ).

We can do the update with only half the computation cost!

θ(t+1) = θ(t) − γ
1

N/2

N
2∑

i=1
∇θL(xi, yi,θ(t)),

θ(t+2) = θ(t+1) − γ
1

N/2

N∑
i=N

2+1

∇θL(xi, yi,θ(t+1)).

30

Stochastic gradient descent

A big data set is often redundant = many data points are similar.
Training data︷ ︸︸ ︷

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20
y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18 y19 y20

If the training data is big, consider

∇θJ(θ)≈
∑ N

2
i=1∇θL(xi, yi,θ) and ∇θJ(θ)≈

∑N
i=N

2+1∇θL(xi, yi,θ).

We can do the update with only half the computation cost!

θ(t+1) = θ(t) − γ
1

N/2

N
2∑

i=1
∇θL(xi, yi,θ(t)),

θ(t+2) = θ(t+1) − γ
1

N/2

N∑
i=N

2+1

∇θL(xi, yi,θ(t+1)).

30

Stochastic gradient descent

A big data set is often redundant = many data points are similar.
Training data︷ ︸︸ ︷

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20
y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18 y19 y20

If the training data is big, consider

∇θJ(θ)≈
∑ N

2
i=1∇θL(xi, yi,θ) and ∇θJ(θ)≈

∑N
i=N

2+1∇θL(xi, yi,θ).

We can do the update with only half the computation cost!

θ(t+1) = θ(t) − γ
1

N/2

N
2∑

i=1
∇θL(xi, yi,θ(t)),

θ(t+2) = θ(t+1) − γ
1

N/2

N∑
i=N

2+1

∇θL(xi, yi,θ(t+1)).
30

Stochastic gradient descent
Training data︷ ︸︸ ︷

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20
y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18 y19 y20

θ(1) = θ(0) − γ∇θL(x1, y1,θ(0))

• The extreme version of this strategy is to use only one data point at each
training step (called online learning)

• We typically do something in between (not one data point, and not all data).
We use a smaller set called mini-batch.

• One pass through the training data is called an epoch.

31

Stochastic gradient descent
Training data︷ ︸︸ ︷

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20
y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18 y19 y20

θ(2) = θ(1) − γ∇θL(x2, y2,θ(1))

• The extreme version of this strategy is to use only one data point at each
training step (called online learning)

• We typically do something in between (not one data point, and not all data).
We use a smaller set called mini-batch.

• One pass through the training data is called an epoch.

31

Stochastic gradient descent
Training data︷ ︸︸ ︷

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20
y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18 y19 y20

θ(3) = θ(2) − γ∇θL(x3, y3,θ(2))

• The extreme version of this strategy is to use only one data point at each
training step (called online learning)

• We typically do something in between (not one data point, and not all data).
We use a smaller set called mini-batch.

• One pass through the training data is called an epoch.

31

Stochastic gradient descent
Training data︷ ︸︸ ︷

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20
y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18 y19 y20

θ(4) = θ(3) − γ∇θL(x4, y4,θ(3))

• The extreme version of this strategy is to use only one data point at each
training step (called online learning)

• We typically do something in between (not one data point, and not all data).
We use a smaller set called mini-batch.

• One pass through the training data is called an epoch.

31

Stochastic gradient descent
Training data︷ ︸︸ ︷

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20
y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18 y19 y20︸ ︷︷ ︸

Mini-batch

θ(1) = θ(0) − γ
1
5

5∑
i=1
∇θL(xi, yi,θ(0))

• The extreme version of this strategy is to use only one data point at each
training step (called online learning)

• We typically do something in between (not one data point, and not all data).
We use a smaller set called mini-batch.

• One pass through the training data is called an epoch.

31

Stochastic gradient descent
Training data︷ ︸︸ ︷

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20
y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18 y19 y20
. ︸ ︷︷ ︸

Mini-batch

θ(2) = θ(1) − γ
1
5

10∑
i=6
∇θL(xi, yi,θ(1))

• The extreme version of this strategy is to use only one data point at each
training step (called online learning)

• We typically do something in between (not one data point, and not all data).
We use a smaller set called mini-batch.

• One pass through the training data is called an epoch.

31

Stochastic gradient descent
Training data︷ ︸︸ ︷

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20
y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18 y19 y20
. ︸ ︷︷ ︸

Mini-batch

θ(3) = θ(2) − γ
1
5

15∑
i=11
∇θL(xi, yi,θ(2))

• The extreme version of this strategy is to use only one data point at each
training step (called online learning)

• We typically do something in between (not one data point, and not all data).
We use a smaller set called mini-batch.

• One pass through the training data is called an epoch.

31

Stochastic gradient descent
Training data︷ ︸︸ ︷

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20
y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18 y19 y20
. ︸ ︷︷ ︸

Mini-batch

θ(4) = θ(3) − γ
1
5

20∑
i=16
∇θL(xi, yi,θ(3))

• The extreme version of this strategy is to use only one data point at each
training step (called online learning)

• We typically do something in between (not one data point, and not all data).
We use a smaller set called mini-batch.

• One pass through the training data is called an epoch.
31

Stochastic gradient descent
Training data︷ ︸︸ ︷

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20
y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18 y19 y20
Iteration:

Epoch:

• If we pick the mini-batches in order, they might be unbalanced and not
representative for the whole data set.

• Therefore, we pick data points at random from the training data to form a
mini-batch.

• One implementation is to randomly reshuffle the data before dividing it into
mini-batches.

• After each epoch we do another reshuffling and another pass through the
data set.

32

Stochastic gradient descent
Training data︷ ︸︸ ︷

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20
y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18 y19 y20
Iteration:

Epoch:

• If we pick the mini-batches in order, they might be unbalanced and not
representative for the whole data set.

• Therefore, we pick data points at random from the training data to form a
mini-batch.

• One implementation is to randomly reshuffle the data before dividing it into
mini-batches.

• After each epoch we do another reshuffling and another pass through the
data set.

32

Stochastic gradient descent
Training data︷ ︸︸ ︷

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20
y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18 y19 y20
Iteration:

Epoch:

• If we pick the mini-batches in order, they might be unbalanced and not
representative for the whole data set.

• Therefore, we pick data points at random from the training data to form a
mini-batch.

• One implementation is to randomly reshuffle the data before dividing it into
mini-batches.

• After each epoch we do another reshuffling and another pass through the
data set.

32

Stochastic gradient descent

Training data (reshuffled)︷ ︸︸ ︷
x7 x10 x3 x20 x16 x2 x1 x18 x19 x12 x6 x11 x17 x15 x5 x14 x4 x9 x13 x8
y7 y10 y3 y20 y16 y2 y1 y18 y19 y12 y6 y11 y17 y15 y5 y14 y4 y9 y13 y8
Iteration:

Epoch:

• If we pick the mini-batches in order, they might be unbalanced and not
representative for the whole data set.

• Therefore, we pick data points at random from the training data to form a
mini-batch.

• One implementation is to randomly reshuffle the data before dividing it into
mini-batches.

• After each epoch we do another reshuffling and another pass through the
data set.

32

Stochastic gradient descent

Training data (reshuffled)︷ ︸︸ ︷
x7 x10 x3 x20 x16 x2 x1 x18 x19 x12 x6 x11 x17 x15 x5 x14 x4 x9 x13 x8
y7 y10 y3 y20 y16 y2 y1 y18 y19 y12 y6 y11 y17 y15 y5 y14 y4 y9 y13 y8
Iteration: 1

Epoch: 1

• If we pick the mini-batches in order, they might be unbalanced and not
representative for the whole data set.

• Therefore, we pick data points at random from the training data to form a
mini-batch.

• One implementation is to randomly reshuffle the data before dividing it into
mini-batches.

• After each epoch we do another reshuffling and another pass through the
data set.

32

Stochastic gradient descent

Training data (reshuffled)︷ ︸︸ ︷
x7 x10 x3 x20 x16 x2 x1 x18 x19 x12 x6 x11 x17 x15 x5 x14 x4 x9 x13 x8
y7 y10 y3 y20 y16 y2 y1 y18 y19 y12 y6 y11 y17 y15 y5 y14 y4 y9 y13 y8
Iteration: 2

Epoch: 1

• If we pick the mini-batches in order, they might be unbalanced and not
representative for the whole data set.

• Therefore, we pick data points at random from the training data to form a
mini-batch.

• One implementation is to randomly reshuffle the data before dividing it into
mini-batches.

• After each epoch we do another reshuffling and another pass through the
data set.

32

Stochastic gradient descent

Training data (reshuffled)︷ ︸︸ ︷
x7 x10 x3 x20 x16 x2 x1 x18 x19 x12 x6 x11 x17 x15 x5 x14 x4 x9 x13 x8
y7 y10 y3 y20 y16 y2 y1 y18 y19 y12 y6 y11 y17 y15 y5 y14 y4 y9 y13 y8
Iteration: 3

Epoch: 1

• If we pick the mini-batches in order, they might be unbalanced and not
representative for the whole data set.

• Therefore, we pick data points at random from the training data to form a
mini-batch.

• One implementation is to randomly reshuffle the data before dividing it into
mini-batches.

• After each epoch we do another reshuffling and another pass through the
data set.

32

Stochastic gradient descent

Training data (reshuffled)︷ ︸︸ ︷
x7 x10 x3 x20 x16 x2 x1 x18 x19 x12 x6 x11 x17 x15 x5 x14 x4 x9 x13 x8
y7 y10 y3 y20 y16 y2 y1 y18 y19 y12 y6 y11 y17 y15 y5 y14 y4 y9 y13 y8
Iteration: 4

Epoch: 1

• If we pick the mini-batches in order, they might be unbalanced and not
representative for the whole data set.

• Therefore, we pick data points at random from the training data to form a
mini-batch.

• One implementation is to randomly reshuffle the data before dividing it into
mini-batches.

• After each epoch we do another reshuffling and another pass through the
data set.

32

Stochastic gradient descent

Training data (reshuffled)︷ ︸︸ ︷
x7 x10 x3 x20 x16 x2 x1 x18 x19 x12 x6 x11 x17 x15 x5 x14 x4 x9 x13 x8
y7 y10 y3 y20 y16 y2 y1 y18 y19 y12 y6 y11 y17 y15 y5 y14 y4 y9 y13 y8
Iteration: 4

Epoch: 1

• If we pick the mini-batches in order, they might be unbalanced and not
representative for the whole data set.

• Therefore, we pick data points at random from the training data to form a
mini-batch.

• One implementation is to randomly reshuffle the data before dividing it into
mini-batches.

• After each epoch we do another reshuffling and another pass through the
data set. 32

Stochastic gradient descent

Training data (reshuffled)︷ ︸︸ ︷
x19 x16 x18 x6 x9 x13 x1 x14 x20 x11 x3 x8 x7 x12 x4 x17 x5 x10 x2 x15
y19 y16 y18 y6 y9 y13 y1 y14 y20 y11 y3 y8 y7 y12 y4 y17 y5 y10 y2 y15
Iteration:

Epoch: 2

• If we pick the mini-batches in order, they might be unbalanced and not
representative for the whole data set.

• Therefore, we pick data points at random from the training data to form a
mini-batch.

• One implementation is to randomly reshuffle the data before dividing it into
mini-batches.

• After each epoch we do another reshuffling and another pass through the
data set. 32

Stochastic gradient descent

Training data (reshuffled)︷ ︸︸ ︷
x19 x16 x18 x6 x9 x13 x1 x14 x20 x11 x3 x8 x7 x12 x4 x17 x5 x10 x2 x15
y19 y16 y18 y6 y9 y13 y1 y14 y20 y11 y3 y8 y7 y12 y4 y17 y5 y10 y2 y15
Iteration: 5

Epoch: 2

• If we pick the mini-batches in order, they might be unbalanced and not
representative for the whole data set.

• Therefore, we pick data points at random from the training data to form a
mini-batch.

• One implementation is to randomly reshuffle the data before dividing it into
mini-batches.

• After each epoch we do another reshuffling and another pass through the
data set. 32

Stochastic gradient descent

Training data (reshuffled)︷ ︸︸ ︷
x19 x16 x18 x6 x9 x13 x1 x14 x20 x11 x3 x8 x7 x12 x4 x17 x5 x10 x2 x15
y19 y16 y18 y6 y9 y13 y1 y14 y20 y11 y3 y8 y7 y12 y4 y17 y5 y10 y2 y15
Iteration: 6

Epoch: 2

• If we pick the mini-batches in order, they might be unbalanced and not
representative for the whole data set.

• Therefore, we pick data points at random from the training data to form a
mini-batch.

• One implementation is to randomly reshuffle the data before dividing it into
mini-batches.

• After each epoch we do another reshuffling and another pass through the
data set. 32

Stochastic gradient descent

Training data (reshuffled)︷ ︸︸ ︷
x19 x16 x18 x6 x9 x13 x1 x14 x20 x11 x3 x8 x7 x12 x4 x17 x5 x10 x2 x15
y19 y16 y18 y6 y9 y13 y1 y14 y20 y11 y3 y8 y7 y12 y4 y17 y5 y10 y2 y15
Iteration: 7

Epoch: 2

• If we pick the mini-batches in order, they might be unbalanced and not
representative for the whole data set.

• Therefore, we pick data points at random from the training data to form a
mini-batch.

• One implementation is to randomly reshuffle the data before dividing it into
mini-batches.

• After each epoch we do another reshuffling and another pass through the
data set. 32

Stochastic gradient descent

Training data (reshuffled)︷ ︸︸ ︷
x19 x16 x18 x6 x9 x13 x1 x14 x20 x11 x3 x8 x7 x12 x4 x17 x5 x10 x2 x15
y19 y16 y18 y6 y9 y13 y1 y14 y20 y11 y3 y8 y7 y12 y4 y17 y5 y10 y2 y15
Iteration: 8

Epoch: 2

• If we pick the mini-batches in order, they might be unbalanced and not
representative for the whole data set.

• Therefore, we pick data points at random from the training data to form a
mini-batch.

• One implementation is to randomly reshuffle the data before dividing it into
mini-batches.

• After each epoch we do another reshuffling and another pass through the
data set. 32

Mini-batch gradient descent

The full stochastic gradient descent algorithm (a.k.a mini-batch gradient
descent) is as follows

1. Initialize θ(0), set t← 1, choose batch size nb and number of epochs ne.
2. For i = 1 to ne

(a) Randomly shuffle the training data {(xi, yi)}ni=1.
(b) For j = 1 to n

nb
(i) Approximate the gradient of the loss function using the mini-batch
{(xi, yi)}jnbi=(j−1)nb+1,

d̂(t) = 1
nb

∑jnb
i=(j−1)nb+1∇θL(xi, yi,θ)

∣∣∣
θ=θ(t)

.

(ii) Do a gradient step θ(t+1) = θ(t) − γd̂(t).
(iii) Update the iteration index t← t+ 1.

At each time we get a stochastic approximation of the true gradient
d̂(t) ≈ 1

n
∑n

i=1∇θL(xi, yi,θ)
∣∣∣
θ=θ(t)

, hence the name. 33

Implementation Aspects

• Learning rate.
Recall that decreasing the learning rates during training helps to converge.
Let γ be the learning rate and η ∈ (0, 1) a shrinkage-factor.
One approach is to use γηk−1 in the kth epoch.

• Momentum.
For example, replace (5.2) with

xk+1 = xk − αkg
(
xk, ξk

)
+ βk

(
xk − xk−1

)
(5.37)

Adam is a popular optimizer in deep learning:
Kingma, Diederik P., and Jimmy Ba. ”Adam: A method for stochastic optimization.”
International Conference on Learning Representations (2015).

34

Differential private SGD

Differential Privacy in a Nutshell

Can we train models while preserving privacy?

Differential privacy offers a framework for publishing trained models in a way
that respects the individual privacy of every user.

Definition
A randomized mechanismM : D → R with domain D and range R satisfies
(ϵ, δ)-differential privacy if for any two adjacent inputs d,d′ ∈ D and for any
subset of outputs S ⊆ R it holds that

P [M(d) ∈ S] ≤ exp(ϵ)P
[
M(d′) ∈ S

]
+ δ.

Dwork, Cynthia, Frank McSherry, Kobbi Nissim, and Adam Smith. ”Calibrating noise to sensitivity in private data analysis.” In Theory of Cryptography:
Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA, March 4-7, 2006. Proceedings 3, pp. 265-284. Springer Berlin Heidelberg, 2006. 35

Differential Privacy

Can we train models while preserving privacy?

Differential privacy offers a framework for publishing trained models in a way
that respects the individual privacy of every user.

Definition
A randomized mechanismM : D → R with domain D and range R satisfies
(ϵ, δ)-differential privacy if for any two adjacent inputs d,d′ ∈ D and for any
subset of outputs S ⊆ R it holds that

P [M(d) ∈ S] ≤ exp(ϵ)P
[
M(d′) ∈ S

]
+ δ.

Dwork, Cynthia, Frank McSherry, Kobbi Nissim, and Adam Smith. ”Calibrating noise to sensitivity in private data analysis.” In Theory of Cryptography:
Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA, March 4-7, 2006. Proceedings 3, pp. 265-284. Springer Berlin Heidelberg, 2006. 36

Differentially Private Stochastic Gradient Descent

Abadi, Martin, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang. ”Deep learning with differential privacy.” In
Proceedings of the 2016 ACM SIGSAC conference on computer and communications security, pp. 308-318. 2016.

37

Coordinate descent

Motivation

The problem is that running gradient descent

xk+1 = xk − αk∇f
(
xk
)
, k = 0, 1, 2, . . . (3.2)

requires the computation of the gradient ∇f(x) which might be expensive in the
large-scale case (meaning that either N or n is very large).

Central question:

Is it possible to approximate the gradient ∇f(x)?

Ideas:

(i) Approximate ∇f (think of a sum) using a subset of terms (shrink N)
(ii) Approximate ∇f (think of a vector) using a subset of dimensions (shrink n)

38

Coordinate Descent

Instead of approximating

f(x) = 1
N

N∑
i=1

fi(x) with ∇f(x) = 1
N

N∑
i=1
∇fi(x) (5.5)

with a single term, we now consider isolated dimensions of ∇f(x), i.e.,

xk+1 = xk − αk∇ikf(x
k)eik , (6.2)

where eik is the ikth unit vector.

We now consider smooth convex functions.

39

Coordinate Descent

Let Li be a coordinate-wise Lipschitz constant, i.e.,

|∇if(x+ γei)−∇if(x)| ≤ Li|γ|, for i = 1, . . . ,n (6.4)

and

Lmax = max
i

Li. (6.5)

We further assume that f is convex and uniformly Lipschitz continuously
differentiable and attains a minimum at the set S .

There exists an 0 < R0 <∞ such that

max
x

min
x⋆∈S
∥x− x⋆∥ ≤ R0.

40

Coordinate Descent

Theorem
Given the assumptions from the previous slide and that ik in (6.2) is selected
uniformly at random from {1, 2, . . . ,n}, and that αk = L−1

max.

Then for all k > 0, we have

E
[
f(xk)

]
− f⋆ ≤ 2nLmaxR20

k . (6.7)

If f is also strongly convex with m > 0, we have

E
[
f(xk)

]
− f⋆ ≤

(
1− m

nLmax

)k (
f(x0)− f⋆

)
. (6.8)

41

Cyclic Coordinate Descent

Example: min
x1,x2

f(x1, x2) = 1
2(x

2
1 + x22)

42

Coordinate Descent

Theorem
Given the assumptions from some slides ago and that ik in (6.2) is selected
cyclically via ik = (kmodn) + 1, and that αk = L−1

max.

Then for all k = n, 2n, 3n, . . ., we have

f(xk)− f⋆ ≤
4n
αk
(1+ nL2α2

k)R
2
0

k+ 8 . (6.20)

If f is also strongly convex with m > 0, we have

f(xk)− f⋆ ≤
(
1− m

2
αk
(1+ nL2α2

k)

) k
n (

f(x0)− f⋆
)
. (6.21)

43

Matrix Norms, Assignment & Summary

Lipschitz Continuous Functions and Matrix Norms

• Most often when writing ∥ · ∥, we have a norm for a vector inside the norm
(and ∥x∥2 can be interpreted as the length of vector x)

• There are also matrix-norms, and the spectral norm is one example:
∥A∥spectral =

√
λmax(ATA), where λmax(·) is the largest eigenvalue of ATA.

• Spectral norm and Euclidean norm are compatible in the sense that for any
A ∈ Rn×n and x ∈ Rn, we have ∥Ax∥2 ≤ ∥A∥spectral∥x∥2.

• If f has a Hessian matrix f′′ with a bounded spectral norm (by L), the gradient
f′ is Lipschitz continuous with L:

∥f′′(x)∥spectral ≤ L for all x =⇒ f′ Lipschitz continuous with L

44

Assignment 2

• The second assignment is mainly about Lecture 2.
• For the programming task, use a programming language of your choice.
• Deadline: March 31st, submission via e-mail to Sebastian.
• You will be assigned a peer-review.

• Grade the assignment of your peer.
• Provide constructive feedback.
• Recommend acceptance/rejection with a brief justification.

• Submit your peer-review until April 14th via e-mail to Sebastian.

45

A few concepts to summarize Lecture 2

Stochastic gradient descent (SGD): A version of gradient descent where we at each iteration we only use a small
part of the training data (a single data point or a mini-batch).

Learning rate (a.k.a step-length): A scalar tuning parameter deciding the length of each gradient step in
GD/SCG/CD.

Mini-batch: The group of training data that we use at each iteration in SGD.

Batch size: The number of data points in one mini-batch.

Epoch: One complete pass though the entire training data set using SGD.

Adam: A state-of-the-art optimizer based on SGD and momentum which is popular in deep learning.

Differential privacy (DP): A probabilistic framework that allows us to publish models that respect individual
user privacy.

Coordinate descent (CD): A version of gradient descent where we at each iteration we only update a single
dimension of the parameter vector.

46

	Stochastic gradient descent (SGD)
	SGD in deep learning
	Differential private SGD
	Coordinate descent
	Matrix Norms, Assignment & Summary

