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Course schedule

 Topic 1: Gradient based optimisation

 Topic 2: Stochastic gradient based optimisation
 Topic 3: Gradient free optimisation

» Topic 4: Optimisation with constraints

 Topic 5: EM algorithm and bootstrap

* Topic 6: Simulation of random variables

» Topic 7: Importance sampling

Course homepage:
http://www.adoptdesign.de/frankmillereu/adcompstat2025.html

Includes schedule, reading material, lecture notes, assignments
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Today’s schedule: gradient free methods

« Particle swarm optimisation (PSO)
* Idea
 Different versions
» Theoretical investigations

- Simulated annealing
* Idea (for the generic optimisation problem)
« Simulated annealing for combinatorial optimisation
 Theoretical basis

» To compare algorithms or hyperparameter choices by empirical studies
* Nelder-Mead algorithm
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Particle swarm optimisation

« Swarm of s particles

 Position of particle i

at iteration t + 1: xgt“)

* Velocity of particle i

at iteration t + 1: vgtﬂ)
Ko

 Best positions found so far:
 Best location found i *

>

* by particle i: pgést’i O\
& » Global best solution — ) 1 i
()
found: gy /
° X
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Particle swarm optimisation

« Movement of particle i at iteration t + 1:

. x§t+1) _ xgt) n v§t+1)
o 1t _ (%) (t+1) . (t) (t) (t+1)  (t)

12 =wv; " + R, (pbest, =X ) TRy (G agt
inertia weight cognitive component social component

. R§t+1) and Rgtﬂ) are uniformly distributed, runif ()

t
wy” 9 g()est

(1)
X _,* (t)
l pbest, i
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Particle swarm optimisation

» Bimodal normal mixture example
from Lecture 1

m_

« PSO with s = 12 particles using ~
psoptim (in R-package pso)

e Iteration 1

* Jteration 2
 JTteration 3 o -
* Jteration 4

 Jteration 5 .

 Jteration 40
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Particle swarm optlmlsutlon

Proportion of PSO -runs which

« Bimodal normal mixture example from
Lecture 1 o -

* In some runs, the local maximum is
identified as global maximum -

 Risk to remain at a local maximum can
be reduced if not all particles are o -
informed about the global best solution

« Option control=list (p= ) T -
controls proportion informed,; 1 0 : 2 3

default 1- (11/12) ~3=0.23. All informed (p=1)
239% informed (default)
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Particle swarm optimisation

- Example call:
Dimension of problem

* pso <- psoptim(par=rep(NA,2),
fn:g , Function to optimise
lower=-1, upper=3, Search space
. (using vectors as limits enables different limits for the dimensions)
control=list (

fnscale=-1, For maximisation
Running time roughly maxit=1000 y_Iteration number; default can be
linear in each of these _ too large in many situations
two parameters p=0.23, o

=12 Proportion informed

Swarm size; default can be too low in
) ) some situations

« Some further options: ¢ . p= c¢; (cognitive comp.), ¢.g= ¢, (social comp.),
w= w (inertia weight/exploitation const.), trace=1 (output of tracing info)
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Particle swarm optimisation - versions

« PSO first suggested: 1995 by Kennedy and Eberhart

* Clerc (2016) distinguishes following (main) versions:
* 1998. A basic version
« SPSO 2007 ("Standard PSO”)
 SPSO 2011
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Particle swarm optimisation - inertia weight

« Movement of particle i at iteration t + 1:

x§t+1) _ x(t) N v(t+1)

t+1 t t+1 t t t+1) . (t t
vg ) = wvg )+ c1R§ ) (p{n)ast, o xl( )) + czRg )(g{)()est — xlg ))

e In the first version from 1995, the inertia weight w was not included
 Particle swarm might “explode”

» Explosion can be prevented by introducing maximum velocity
 Alternatively, inertia weight w < 1 can prevent explosion

* Included in basic version from 1998
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Particle swarm optimisation - dimensions

e In first versions including 1998-basic version and SPSO 2007, random
variables applied for each dimension separately:

t+1 t t+1 t t t+1 t t
i <l 0 o, ) + R (5l
)

where ® is componentwise multiplication and R,(f+1
*v[i] <- w*v[i] + cl*runif (p)*(pbest[i]-x[1]) +
c2*runif (p) * (gbest-x[1])
where v[i], x[i], pbest[i], gbest vectors for each particle i

are vectors

* In SPSO 2011, same random variable used for all dimensions leading to
movement in hyperspheres:

t+1 t t+1 t t t+1) , (t t
. vg ) = wvg )+ c1R§ ) (p{)ést, T xg )) + CZRE )(g{)()est — xg ))

*v[i] <- w*v[i] + cl*runif(l)*(pbest[i]-x[1i]) +

12

c2*runif (1) * (gbest-x[i])
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Particle swarm optimisation - dimensions

 Velocity of particle i at iteration t + 1:

t+1 t t+1 t t t+1 t t
. vg ) — W‘UE ) + C1R§ ) (pl(oést, T xlg )) + czRg )(g{)ést — xg ))

« In SPSO 2011, same random variable used for all dimensions leading
to movement in hyperspheres

(t+1)
x§t+1) xl,
(®) (t)
Ipest /ijvgt) Ipest
of gravidity”
() ) @ ®,.©® ®
Xi Xi Xi +pbest, "Ipest
(t) 3
pbest, i

See Clerc (2016)

13
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Particle swarm optimisation - dimensions

 In version SPSO 2011, particles can move only in hyperspace spanned by
starting particles

» Disadvantages:

« If dimension of problem p is large in relation to swarm size s, e.g. p > s,
optimisation done only in a subspace and high risk that optimum is missed

 Even if starting particles well distributed, they might become close to a
hyperspace after some iterations

« Advantages:

* Problem with dependence on coordinate system and with “biased search”
is reduced; finds optima along axes and diagonal easier (Clerc, 2016)

 Linearly constrained problems can easily be handled (see 1L.4)
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PSO - choice of hyperparameters

 Velocity of particle i at iteration t + 1:

t+1 t t+1 t t t+1 t t
. vg ) — W‘Ug )+ c1R§ ) (pl(oc)est,i — xg )) + czRg )(gl(o()est — xl( ))

« Hyperparameters to choose: w, ¢4, ¢,
« Particles should not diverge
 “Stability analyses” had been done — these are simplified analytical computations,

for example:

« Assume one-dimensional case,

« Assume static pgé st ; = Pbest and ggé st = Ibest (“stagnation assumption”)

 Ignore randomness (replace R ,((Hl) by expected value 1/2)
(1) «

* Derive requirements for w, c¢;, ¢, such that x; “converges”
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PSO - choice of hyperparameters

 Velocity of particle i at iteration t + 1:

t+1 t t+1 t t t+1 t t
. vg ) — Wvg ) 4+ C1R§ ) (pl(oc)est,i — xg )) + czRg )(gl(oést — xg ))
 Standard choice in SPSO 2007, based originally on stability analyses from Clerc and

Kennedy (2002):
1
W= g = 0721,

* ¢ =c; =>+In(2) = 1.193

 Since deterministic R ,((Hl) = % and static py.qr> 9pegt are used in stability analyses, no
distinctive requirements for ¢; and ¢, are obtained and a default is often just ¢; = ¢,

* Write now Clgtﬂ) = cle(cHl)vanif[O, ¢l k=1,2.
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Particle swarm optimisation - stability analyses

« Movement of specific particle at iteration ¢t + 1 (drop index i):
D — O L (D)

t+1 t t+1 t t t+1 t t
c D 2 @y D O 3Oy 4 (DO O

 Focusing on particle locations, we can describe PSO as:
LD O (D) © _

x —_=
_ .® () (t+1) (. () (t) (t+1) ( (b) (t)
=X +wr + G (pbest - X ) L (gbest - X ) < [

LD 4 O
_ (0 (t) (t-1) (t+1) [ (¢) (t) (t+1) ((t) (t)
X +W(x X )+Cl (pbest_x )+CZ (gbest_x )

t t+1 t+1 t—1 t+1 t t+1 t
= X O (14w — (D - (D) — gD 4 (SO (00 g0

 Therefore, a single equation is sufficient to describe the PSO iterations
(x(t*1D depends then on both x(*) and x(t=1)
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Particle swarm optimisation - stability analyses

« Movement of specific particle at iteration ¢t + 1 with PSO:

t+1) — (¢ _ i+ A+ t—1 (t+1)_(t) (t+1) _(t)
X >_x<>(1+w C! C ) w4 cFVp® 4 Vg

« Stability analyses were improved during the two previous decades, see
Bonyadi and Michalewicz (2016) and Cleghorn and Engelbrecht (2018);
definitions below follow the latter

 Order-1 stability
A sequence (x()) of p-dimensional random variables is called order-1 stable

if E|x®®]| - xj for some xp

 Order-2 stability
A sequence (x()) of p-dimensional random variables is called order-2 stable
if Var[x(®)]| - x;, for some x,,
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Particle swarm optimisation - stability analyses

« Movement of specific particle at iteration ¢t + 1 with PSO:

(t+1) — ..(b) _ pr+1) _ A+ (1) (t+1) (1) (t+1) (0)
X =X (1+W C; C, ) wx + C; pbest+C2 Ipest

« Bonyadi and Michalewicz (2016) interpret each of Cl(Hl), CZ(HD, pg ()est' gg()est

as 11d random variables

 This generalises assumptions that these values are fixed values; it weakens
the stagnation assumption

 The iid assumption for pgé spt=1. and for g](oté swt=1. still need to be

seen as approximations
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Particle swarm optimisation - stability analyses

* We consider the one-dimensional case (p = 1) now

« Movement of specific %jarticle at iteration t + 1 with PSO:

x @D = O (1 +w — C1(t+1) . Cz(t+1)) —wx @D 4 Cl(t+1)p(t) n Cz(t+1)g(t)

best best

« To write the iterations as a linear one-step relation, we write
Z2(t+1) _ (x(t+1)’x(t))T, U=14+w— Cl(t+1) _ Cz(tﬂ);

_ (t+1)_ (t) (t+1) _(t)
z(t+1) = (U W) 7O 4+ (€1 Ppest T C2 T 9pest
10 0

« Since U and z(® are independent, we have

and

_ (t+1)_(t) (t+1) (t)
Ez(t+1) = (ElU OW) Ez® 4+ (E [Cl pbest] +E [CZ Ibest )
0

>Sequence Ez(**D is of form Ez(¢tD = MEz(® + b
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Particle swarm optimisation - stability analyses

« Sequence Ez(t*1 is of form Ez+D = MEz(®) + b

» Functional analysis says that Ez(") converges if spectral radius of M is <1,
see Bonyadi and Michalewicz (2016)’s Lemma 1

» Spectral radius p(M) of M € RP*? is p(M) = max{|},], ..., |, |} where A; are
the p (real or complex) eigenvalues of M

« Recall that a non-symmetric RP*P matrix still has p eigenvalues as long as
we allow for complex eigenvalues

» If A = r + ci then |A] = V72 + ¢2; R can cope with this easily:

* > M <- matrix(c(-0.66, 1, -0.72, 0), ncol=2)
> eigen (M) $values
[1] -0.3340.7817289i -0.33-0.7817289i
> max (abs (eigen (M) $Svalues)) # spectral radius
[1] 0.8485281
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Particle swarm optimisation - stability analyses

« We have

Ez(t+1) = (ElU _OW) Ez® + <E [Cl(”l)pgést] +E [CZ(Hl)gl()te)zst])
0

« Compute spectral radius of (ElU _OW)
_ _
» Eigenvalues: 0 = det ()L _1EU V}‘:) =2 —AEU+w = A= EU-I_-\/EZU—ALW
* One can show: ) S -
2 __ _ 2 _ . | o
p(M) = ma {[ZNEE=w] [EUREURa] g iy BVl
c1+cC
—1<w<land0<———<2(w+1) o o !
e Assumec =c; = ¢y )

LINKOPING
UNIVERSITY



Advanced computational statistics L3 2025-04-01 23

Particle swarm optimisation - stability analyses

e Assumec=c;=c,. EU=1+w—c

e One can show:

c
o R L B T G Y
R
\

2_ - 2 _
o(M) = max {|EU+\/E2U 4w|’ |[EU-VEU 4w|} < 1iff

—l<w<landO0<c<2(w+1) .

 If it would be too difficult to show the above, o
one could calculate the maximum eigenvalue

for a grid of (w, ¢)-pairs and plot the cases
when it is <1 (see R code on homepage)

01 2 3 4
L 1 1 1 |
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Particle swarm optimisation - stability analyses

 To do stability analyses for order-2 stability (about the limit of the variance
Var(z(*1)), we can investigate

Z(t+D) = (x(t+D) 4 () (x(t+1))2’ (x(t))Z’ x(E+D) (O3
 The iterations can be written as system
/ EU —Ww 0

o |
0 0 0

0
0
Ezt+D = | 2F] UP] —2wEP E[U?] w? —2wEU |Ez"¥ +b
0
0

S )

\ 0 1
EP 0 EU

(t+1)_ (t) (t+1) _(t)
where P = C, Phast T C2 Ipast
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Particle swarm optimisation - stability analyses

’C:C]_:Cz

e -1 <w<1and
0<c<2w+1)

C
O = N W R
I

» Sequence (z(**1) is order-2 stable if: 10 00 10
-1 <w<1and

0<
» Default in R—package pso based on Clerc and Kennedy (2002):

1 1
21n(2) 0.721,c=c1=¢c; =5+ In(2) = 1.193

W =
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PSO - choice of hyperparameters

 Based on stability analysis, choose w, c;, ¢, respecting

24(w?-1
—1<w<land0<c¢ +c, < x_ﬂ

w > 01is in spirit of the algorithm’s idea

Another hyperparameter to be chosen: swarm size s

« Swarm size motivated by empirical studies based on standard optimisation problems
SPSO 2007: s = 10 + [2/7]

Clerc (2012) shows with 12 standard optimisation problems:

- usually swarm sizes s > 10 + [2./p] better,
« dependence on dimension p is weak

SPSO 2011: choice of user; suggested: 40
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PSO - topologies for particles

« Particles “inform” other particles about their results
* In the original PSO, each particle informs all others

 To ensure that not all particles are attracted prematurely by particle
at a local optimum, do not inform all particles

 The structure how information flows is specified in "topologies”

 Global top. (all inform all) Ring top. (all inform their
two "neighbours”)

0 00
@ 4 @ 4

) -
) ° 4 ) ° 4
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PSO - exploration versus exploitation

 Exploration of the search space
 Exploitation around a promising position

 The topology: A sparce topology (e.g. ring top.) ensures more exploration
compared to a dense one (e.g. global top.)

« Parameter w: Larger w leads to more exploration
« Parameters c; and c,: Smaller ¢, (and c;) lead to more exploration

* Clerc (2016; Section 8.6.4.1): The experimental evidence for such
dependencies [on w, ¢4, ¢, ] is weak
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Simulated annealing

20

1.5

0o

Nelder-Mead (0:15-1:35)
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Simulated annealing

« Start value x(9; stage j = 0,1, 2, ... has m; iterations; initial temperature 7,; set j = 0

« Given iteration x(*), generate x(*1) as follows:

1. Sample a candidate x* from a pr()p()sal distribution p(- |x(t) (x®) — g
g(x") - g
g(x)—g(x\V), < for

2. Compute h(x(t) ,x*) = exp( - ) minimisation
J

3. Define next iteration x**1 according to
£+ — x*, with probability min{h(x(t), x*), 1}
x otherwise

4. Sett <- t+1 andrepeat 1.-3. m; times
5. Update t; = a(rj_;) and m; = f(m;_q); setj <- j+1l;goto1

7; is temperature; function a should slowly decrease it; function f should be increasing
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Simulated annealing

« Initially, also “bad” proposals are accepted
« With decreasing temperature, accept only improvements

» This helps to explore first and avoids convergence to a local maximum too
early

« Algorithm which has therefore chances to find the global optimum in
presence of multiple local optima

9

* method=""SANN” of R function optimis “a variant of simulated annealing’
(documentation of optim)

« Initial temperature can be important choice (can be changed e.g. by
control=list (temp=0.01); default 10 might be bad)
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Simulated annealing: proposal distribution

 Step 1 in simulated annealing iteration rule:

1. Sample a candidate x* from a proposal distribution p(- [x(®)

» Proposal distribution could be uniform distribution on a neighbourhood of x®;

for a unidimensional optimisation problem:
xs <- xt + runif(n=1, min=-1, max=1l)

 Instead of Unif[-1,1], a distribution on a smaller or larger neighbourhood can be used

* But also, normal distribution N (0, ¢%) or other symmetric distribution around 0
might be added to x(®) instead

« For multidimensional cases, one could use iid components, a uniform distribution on
a ball around x(® or a multivariate normal distribution with mean x(®

LINKOPING
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Simulated annealing - lHustration

 For illustration, we consider
two-dimensional function g “
according to contour lines in figure
(one global and one local maximum)
and fixed temperature 7 o]

 Proposal distribution
p(x*[x) = p(x®]x*)

2

= —1{[|x® — x*|| < ]

T2
for some constant r (here=1)
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Simulated annealing - lHustration

o —

 Proposal distribution
p(x*|x) = p(x|x*)
1 *
= ml{”x(t) — X < T}
for some constant r (here=1)

« Start here with x(% = (1,-0.5)

« Randomize uniformly on unit
circle around x(® (proposal

distribution); result x* = (0.58,0.08)

« g(x*) = 0.296 > g(x(?) = 0.098; so, this was
an uphill step and is automatically

accepted (h(x®D,x*) > 1)

— —

2025-04-01

34

LINKOPING
UNIVERSITY



Advanced computational statistics L3 2025-04-01 35

Simulated annealing - IHustration

o —

« x(0 =(1,-0.5)
« Uphill steps: x(") = (0.58,0.08) -
+ x(2) = (-0.33,0.13) N

« x3) = (-0.23,0.05)

e Then downhill step ro)posed:
x* = (—0.32,0.4), h(xW,x*) = 0.774 .

« Random Unif(0,1) generated: 0.573
and since this is smaller than R = 0.774,
x® = x* = (=0.32,0.4) is accepted > 4 0 1z 3 4

« Again downhill step proposed: x* = (—0.67,1.31),
h(x®, x*) = 0.560; random Unif(0,1): 0.890 and rejection of x*

e x5 = x® = (-0.32,0.4)

-2
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Combinatorial optimisation

 Generic optimisation problem:
« x p-dimensional vector, g: RP - R function
« We search x* with g(x*) = max g(x)

« Now, we consider also optimisation problems which cannot exactly be
formulated according to the generic one

 Especially, function g might be defined on another space than R?

» Generalized optimisation problem:
« x p-dimensional vector, g: S —» R function for some set §

« We search x* with g(x*) = max g(x)

LINKOPING
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Example: Multiple linear regression

» Generalized optimisation problem:
« x p-dimensional vector, g: § - R function for some set S
« We search x* with g(x*) = max g(x)

e Multiple linear regression with g predictors
 Desired to choose best model based on criterion like AIC
« There are 29 possible models

« If g small, AIC of all models can be computed (exhaustive search);
for g larger, this is impossible (e.g. g=50, 1ms to compute an AIC
— more than 35 000 years needed!)

* One model can be represented as element of S = {0, 1} (1=predictor
included in model, 0 otherwise)
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Example: Multiple linear regression

 Generalized optimisation problem:
« x p-dimensional vector, g: § - R function for some set S

* We search x* with g(x*) = max g(x)
« Optimisation problem: Which model gives best AIC?

« Model 1: (1,0,0,0,1,1,0,1, ...)
Model 2: (1,1,1,0,1,1, 0, 0, ...)

« Which models are “close” to each other? (Need metricon S = {0,1}9)
What is a neighbourhood of a model?

 Apply simulated annealing e.g. with neighbourhood being all models which differ
by one predictor (for proposal dist.)

« Uniform distribution on neighbourhood can be used

LINKOPING
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Example: Multiple linear regression

 Generalized optimisation problem:
« x p-dimensional vector, g: S —» R function for some set S

« We search x* with g(x*) = max g(x)

e Arbitrary starting model generated (e.g. uniform distribution on § = {0, 1}9,
xs <- rbinom(q, size=l1l, prob=0.5))

» See example in Givens and Hoeting (2013), Section 3.3, with 27 predictors

LINKOPING
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Recall from LI:
Maximising information of experimental designs

« Regression model y = XB + € (where € has iid components)
X design matrix (depends on choice of observational points)

« Covariance matrix of Least Squares estimate B is
Cov(B) = (XTX)™1- const

» Choose design of an experiment such that XX “large”
 D-optimality: g("design") = det(X"X)
« We search design® with g(design*) = max g(design)

LINKOPING
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Ex: Maximising information of experimental designs

- Regression model y = X + &, Cov(B) = (XTX)™1: const
« We search design® with g(design®) = max g(design)

- Example: cubic regression, y = By + Biw + B,w? + Baw? + &,
w can be chosen in [-1, 1], but practical circumstances require here a distance

between design points ‘of . 05

* Therefore, we allow design points {-1, -0.95, -0.9, ..., 1} and at most one observation
can be done at each point

« Each observation has a cost; and we want to minimise the penalized D-optimality
#observations * 0.2 — log (det(XTX))

[ J
1wy wi o ow?

2 3
X = 1 wy, wy w,
2 3
1 w, w; w;
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Ex: Maximising information of experimental designs

 Example: cubic regression, y = By + fyw + Bow? + fzw3 + &,
w can be chosen in [-1, 1], but practical circumstances require here a distance
between design points of 0.05

» Therefore, we allow design points {-1, -0.95, -0.9, ..., 1} and at most one
observation can be done at each point

« A design can be represented by a vector in S = {0, 1}*! where 0 means that no
observation is done at a design point and 1 means that one observation is
made there

« How can a reasonable neighbourhood on S look like here?

LINKOPING
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Simulated annealing

« Start value x(9; stage j = 0,1, 2, ... has m; iterations; initial temperature 7,; set j = 0

« Given iteration x(*), generate x(*1) as follows:

1. Sample a candidate x* from a proposal distribution p(- |x(®))

o ) g(x(t)) _ g(x*)

) — f

2. Compute h(x(t),x*) = exp(g(x )T‘?(x )) minimisation
]

3. Define next iteration x**1 according to
£+ — x*, with probability min{h(x(t), x*), 1}
x otherwise

4. Sett <- t+1 andrepeat 1.-3. m; times
5. Update t; = a(rj_;) and m; = f(m;_q); setj <- j+1l;goto1

7; is temperature; function a should slowly decrease it; function f should be increasing
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Markov Chain Monte Carlo - Metropolis algorithm

(Metropolis et al., 1953)
 Given a density f(x) and aim is to generate a sample following f

» A starting value x(% is generated from some starting distribution

» Given observation x(*), generate x(**1) as follows:

. . . symmetric proposal:
1. Sample candidate x* from symmetric proposal dist. p(- [*(Y)  p(x®|x) = p(x*|x®)
f(x")
f(x®)

2. Compute ratio R(x™, x*) =

3. Sample x(**D according to

x*, with probability min{R (x(t), x*), 1}

2D =
x® otherwise

4. If more observations needed, sett <- t+1;goto1
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Simulated annealing and Metropolis algorithm

 For fixed temperature 7, simulated annealing algorithm is a Metropolis
algorithm

» Kirkpatrick et al. (1983) proposed name simulated annealing for using it as
optimisation method

(x®)-g(x") eXp("g(x*)) (x)
. gxt)—gx* Tj f(x* *
° h(x(t)’x ) = exp( - ) = g(xét)) — f(x(t)) — R(x(t),x )
j exp(__r_ )
J

» Key ingredient of Metropolis and simulated annealing alg.: Markov chain x(¥
has limiting stationary distribution f; for a proof see e.g. Koski (2009)

» Requirement for all: x(*) irreducible and aperiodic chain
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Simulated annealing: stationary distribution for
fixed temperature t

» Fixed temperature 7: Markov chain x(©) has limiting stationary
g(x))

T

distribution with density proportional to f(x) = exp (—

1=0.004
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Convergence of simulated annealing

» Convergence proofs see generated sequence either as sequence of homogeneous
Markov chains (one for each 7) or as one inhomogeneous Markov chain

* For discrete S = {x{, x5, x3, ...} and g having a finite set M of global minima,
simulated annealing converges with probability 1/|M| to each of the M global
minima (references for proofs in Givens and Hoeting, 2013); main idea:

« Stationary distribution proportional to: exp (— J (Tx)) or to exp (— 94x) _Tg ’"i") with
Imin = min{g(x)}

 Therefore, if P is distribution according to stationary distribution,
i)~9min 9\ Xj)=9Gmin
P(x)) = exp (—2509mn) /(1M 4 3, oy exp (— G) )}ﬁ e

T T

T—-0:
- 0forx; € M, -0
=1forx;EM
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Convergence of simulated annealing

 To achieve convergence to a global optimum (possibly in presence of local
optima) in practise, one needs:
* Run iterations for each fixed temperature long enough such that
convergence to stationary distribution achieved
 Cool temperature slowly enough such that iterations have time to escape
from local optima

« Example from Givens and Hoeting (2013; p.73): @
* 5 stages with 60 iterations, then .
» 5 stages with 120 iterations, then _
* 5 stages with 220 iterations

« From one stage to the next, 7 is decreased by 10%,
tau <- 0.9*tau; final 7is 0.91° = 0.206*initial 7

| | | | |
0 200 1000 1300 2000

lteration
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Simulated annealing: + and -

+Very easy to implement

+Theoretical property is good: theoretically, we can guarantee convergence to a
global optimum even in the presence of local optima

+Can even handle some non-standard optimisation problems
—In practice, convergence can be “maddeningly slow”

—One needs to play around with cooling schedule to ensure convergence in
practice

* We need to run the algorithm “long enough” at each temperature (to
ensure stationary distribution)

* We need to cool the temperature slowly enough (to allow escaping from
local optima)
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Comparisons of algorithms or hyperparameter
choices based on empirical studies

« We have several options for optimisation algorithms
* Or — within one algorithm — we can choose some hyperparameters

A possibility is to compare the options by running them on an example
problem. Better, one might want to compare options for a set of easy and

difficult optimisation problems

» For comparability, often "standard optimisation problems” used; see e.g.
Liang et al. (2013)

« Can be mathematical functions or statistical optimisation problems
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Comparisons of algorithms or hyperparameter
choices based on empirical studies

 After choosing some standard optimisation problems, one needs to define a
success criterion (example in Clerk, 2016)

» Possibility: count runs of algorithm leading to a solution x, with
g(x;) > g(x*) — 6; here x* true position of global maximum, and § small

(ideally 6 < g(x*) — g(x;) for any local maximum x; )
« If true success rate for an algorithm is p, we observe a Bin(1, p)-random
variable in each run

p(1-p)
n

»Success rate has sd when doing n runs and you can do informed

choice of n
* E£.g.p=0.8n=100 - sd = 0.04.

LINKOPING
UNIVERSITY



Advanced computational statistics L3 2025-04-01 52

Nelder-Mead algorithm
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Nelder-Mead

« x p—dimensional vector, g: RP - R function

* We search x* with g(x*) = max g(x)

» Nelder-Mead method is heuristic method for p-dimensional optimisation problem
(default in R-function optim)

 Positive:
+No computation of derivatives necessary

* Negative:
- No theoretical guarantee for converge (counter examples exist)
- Might be slow

« Works often well, especially if p not too large
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Nelder-Mead

Idea: Work with simplex of p+1 points; i.e. for two-dimensional optimisation: work
with triangle

Aim that triangle includes maximum
Choose arbitrary starting triangle
Change vertices to "move the triangle upwards”

Two animations:
* https://upload.wikimedia.org/wikipedia/commons/9/96/Nelder Mead2.gif
* https://www.youtube.com/watch?v=KEGSLQ6TIBM
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Nelder-Mead

* Identify worst vertex x,,,,.«; (9(x,,,rs¢) Minimal among all vertices) and
compute average ¢ of remaining vertices

* Let x;,; be best and x4 be second worst vertex

« Rules for

* Reflection

« Expansion
Outer contraction
Inner contraction
Shrinkage
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Nelder-Mead

 Replace x,,,,..; with one of x;, x,, Xg, X (rule depends on values for

g (xworst)’ g (xbad)? g (xbest)’ g (xI)) g (x0)7 g (xR)7 g (xE) , Sec Givens and
Hoeting, page 47-48) and create new simplex/triangle

Xpest

Xbad

» Or in specific cases: Shrink (keep x4,
and move all other vertices towards it)
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Nelder-Mead

» Nelder-Mead algorithm is quite old, but still popular

« Research is ongoing e.g. about convergence results and variants of Nelder-Mead

 Note that Nelder-Mead can be used for dimension p = 1 as well

« However, there exist better gradient free algorithms for p = 1
« R-function optimize uses gradient free algorithm with convergence order
g = 1.324 (some requirements to function g necessary)

Solution x of 0 = x3 — x — 1; (Brent, 1973)
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