
http://creativecommons.org/licenses/by-nc/4.0/

• Topic 1: Gradient based optimisation

• Topic 2: Stochastic gradient based optimisation

• Topic 3: Gradient free optimisation

• Topic 4: Optimisation with constraints

• Topic 5: EM algorithm and bootstrap

• Topic 6: Simulation of random variables

• Topic 7: Numerical and Monte Carlo integration; importance sampling

Course homepage: http://www.adoptdesign.de/frankmillereu/adcompstat2025.html

Includes schedule, reading material, lecture notes, assignments

2025-04-15Advanced computational statistics L4 2

http://www.adoptdesign.de/frankmillereu/adcompstat2025.html

• Equality constraints

• Transformation to an unconstrained problem

• Modification of iterative algorithm to handle constraints

• Lagrange multipliers

• Inequality constraints

• Karush–Kuhn–Tucker approach

• penalty method

• barrier method

• Subset constraint

• Combinatorial constrained optimisation

2025-04-15Advanced computational statistics L4 3

• Optimisation problem:

• 𝒙 p-dimensional vector, 𝑔: ℝ𝑝 → ℝ function

• We search 𝒙∗ with 𝑔 𝒙∗ = max 𝑔(𝒙)

• Subject to ℎ𝑖 𝒙∗ = 0, 𝑖 = 1, … , 𝑚 (equality constraints)

2025-04-15Advanced computational statistics L4 4

• Optimisation problem:

• 𝒙 p-dimensional vector, 𝑔: ℝ𝑝 → ℝ function

• We search 𝒙∗ with 𝑔 𝒙∗ = max 𝑔(𝒙)

• Subject to ℎ𝑖 𝒙∗ = 0, 𝑖 = 1, … , 𝑚 (equality constraints)

• Approaches:

• Transformation to an unconstrained problem
(problem specific approach)

• Modification of iterative algorithm to handle constraints
(algorithm specific approach)

• Lagrange multipliers (general approach)

• 𝕊 = 𝒙 ∈ ℝ𝑝 ℎ𝑖 𝒙 = 0, 𝑖 = 1, … , 𝑚} called feasible points

2025-04-15Advanced computational statistics L4 5

• Example: Cubic regression model for fertilizer-yield-relationship with
fertilizer 𝑥 ∈ [0,1.2]. Experiment planned with

• proportion 𝑤1 of observations using 𝑥1 = 0,

• proportion 𝑤2 using 𝑥2 = 0.4,

• proportion 𝑤3 using 𝑥3 = 0.8,

• proportion 𝑤4 using 𝑥4 = 1.2.

• Note that 𝑤1 + 𝑤2 + 𝑤3 + 𝑤4 = 1.

• Information matrix 𝑴 (proportional to inverse of covariance matrix for
መ𝛽0, መ𝛽1, መ𝛽2, መ𝛽3

𝑇
):

𝑴 = 𝑿𝑇diag 𝑤1, … , 𝑤4 𝑿 = σ𝑖=1
4 𝑤𝑖𝒇(𝑥𝑖) 𝒇(𝑥𝑖)𝑇 with 𝒇 𝑥 = 1, 𝑥, 𝑥2, 𝑥3 𝑇

• The D-optimal design maximises
𝑔 𝒘 = det σ𝑖=1

4 𝑤𝑖𝒇 𝑥𝑖 𝒇 𝑥𝑖
𝑇 subject to ℎ1 𝒘 = 1 − σ𝑖=1

4 𝑤𝑖 = 0

2025-04-15Advanced computational statistics L4 6

• The D-optimal design maximises

𝑔 𝒘 = det σ𝑖=1
4 𝑤𝑖𝒇 𝑥𝑖 𝒇 𝑥𝑖

𝑇 subject to ℎ1 𝒘 = 1 − σ𝑖=1
4 𝑤𝑖 = 0

• Transformation: 1 − σ𝑖=1
4 𝑤𝑖 = 0 ⇒ 𝑤4 = 1 − 𝑤1 − 𝑤2 − 𝑤3

෤𝑔 𝑤1, 𝑤2, 𝑤3 = det σ𝑖=1
3 𝑤𝑖𝒇 𝑥𝑖 𝒇 𝑥𝑖

𝑇 + (1 − 𝑤1 − 𝑤2 − 𝑤3)𝒇 𝑥4 𝒇 𝑥4
𝑇

• The constrained optimisation problem

max. 𝑔 𝑤1, 𝑤2, 𝑤3, 𝑤4 subj. to ℎ1 𝑤1, 𝑤2, 𝑤3, 𝑤4 = 1 − σ𝑖=1
4 𝑤𝑖 = 0

is equivalent to the unconstrained optimisation problem
maximise ෤𝑔 𝑤1, 𝑤2, 𝑤3 .

• Solution with unconstrained optimisation: 𝑤1, 𝑤2, 𝑤3 = (1

4
, 1

4
, 1

4
), 𝑤4 = 1 − 3

4
= 1

4

2025-04-15Advanced computational statistics L4 7

• Constrained optimisation problem:

• 𝒙 p-dimensional vector, 𝑔: ℝ𝑝 → ℝ function

• We search 𝒙∗ with 𝑔 𝒙∗ = max 𝑔(𝒙)

• Subject to 𝑨𝒙∗ − 𝒃 = 𝟎, 𝑨 ∈ ℝ𝑚×𝑝, 𝒃 ∈ ℝ𝑚 (linear equality constraints)

• Example: Particle Swarm Optimisation (see L3)

• Movement of particle i at iteration t+1:

• 𝒙𝑖
(𝑡+1)

= 𝒙𝑖
(𝑡)

+ 𝒗𝑖
(𝑡+1)

• 𝒗𝑖
(𝑡+1)

= 𝑤𝒗𝑖
(𝑡)

+ 𝑐1𝑅1
(𝑡+1)

 (𝒑best, 𝑖
𝑡

− 𝒙𝑖
(𝑡)

) + 𝑐2𝑅2
(𝑡+1)

(𝒈best
𝑡

− 𝒙𝑖
(𝑡)

)

• 𝑅1
(𝑡+1)

and 𝑅2
(𝑡+1)

are uniformly distributed, runif()

• Ensure that 𝑨𝒙𝑖
(0)

= 𝒃 and 𝑨𝒗𝑖
(0)

= 𝟎, then 𝑨𝒙𝑖
(𝑡)

= 𝒃 for all i and t

2025-04-15Advanced computational statistics L4 8

Scalar random variables (SPSO2011),
not random vectors (SPSO2007)

2025-04-15Advanced computational statistics L4 9

• Example: D-optimal design for quadratic
regression without intercept. Experiment
planned on 𝑥 ∈ [0,1] with

• prop. 𝑤1 of observations using 𝑥1 = 0.5,

• prop. 𝑤2 using 𝑥2 = 1,

• 𝑤1 + 𝑤2 = 1.

• 𝑔 𝒘 = det(𝑤1

1

4

1

8
1

8

1

16

+ 𝑤2
1 1
1 1

)

• ℎ 𝒘 = 1 − 𝑤1 − 𝑤2

2025-04-15Advanced computational statistics L4 10

• Feasible points 𝒘 (ℎ(𝒘) = 0)

• Direction of steepest ascent, 𝑔’(𝒘)

Image by cookie_studio on Freepik

These two are orthogonal at constrained max.;
direction orthogonal to feasible points is ℎ’(𝒘)

https://www.freepik.com/free-photo/beautiful-landscape-ukrainian-carpathian-mountains-cloudy-sky_8085596.htm#query=mountain%20path&position=2&from_view=keyword&track=ais

2025-04-15Advanced computational statistics L4 11

• 𝑔 𝒘 = det(𝑤1

1

4

1

8
1

8

1

16

+ 𝑤2
1 1
1 1

)

• ℎ 𝒘 = 1 − 𝑤1 − 𝑤2

• 𝑔′ 𝒘 direction of steepest ascent

• ℎ′ 𝒘 = (−1, −1)𝑇 (orthogonal to feasible points)

• Condition for constrained maximum: 𝑔′ 𝒘 = 𝜆 ℎ′ 𝒘

• 𝑔′(𝒘) − 𝜆 ℎ′ 𝒘 = 0

• Define ℒ 𝒘, 𝜆 = 𝑔(𝒘) − 𝜆 ℎ 𝒘 and determine stationary point

2025-04-15Advanced computational statistics L4 12

• Constrained optimisation problem:

• 𝒙 p-dimensional vector, 𝑔: ℝ𝑝 → ℝ function

• We search 𝒙∗ with 𝑔 𝒙∗ = max 𝑔(𝒙)

• Subject to ℎ𝑖 𝒙∗ = 0, 𝑖 = 1, … , 𝑚 (equality constraints)

• Lagrange:
Let ℒ 𝒙, 𝝀 = 𝑔 𝒙 − 𝝀𝑇𝒉(𝒙), 𝒉 𝒙 = (ℎ1 𝒙 , … , ℎ𝑚 𝒙)𝑇 , 𝝀 ∈ ℝ𝑚 and
𝑔, ℎ1, … , ℎ𝑚 are continuously differentiable. If 𝑔 has a local maximum at
some point 𝒙∗ with 𝒉(𝒙∗) = 𝟎 (i.e. in the constrained maximisation
problem) and at which the gradients of ℎ1, … , ℎ𝑚 are linearly independent,
then there exists a 𝝀 such that gradient ℒ′ 𝒙∗, 𝝀 = 𝟎 (i.e. stationary point
in the unconstrained problem).

2025-04-15Advanced computational statistics L4 13

• Constrained optimisation problem:

• 𝒙 p-dimensional vector, 𝑔: ℝ𝑝 → ℝ function

• We search 𝒙∗ with 𝑔 𝒙∗ = max 𝑔(𝒙)

• Subject to ℎ𝑖 𝒙∗ = 0, 𝑖 = 1, … , 𝑚 (equality constraints)

• Unconstrained problem:
Search stationary point (𝒙∗, 𝝀) of ℒ 𝒙, 𝝀 = 𝑔 𝒙 − 𝝀𝑇𝒉(𝒙).

• Note:

• 𝜕

𝜕𝜆𝑖
ℒ 𝒙∗, 𝝀 = 0 ensures ℎ𝑖 𝒙∗ = 0

• 𝜕

𝜕𝑥𝑖
ℒ 𝒙∗, 𝝀 = 0 ensures that gradient 𝑔′ 𝒙∗ is orthogonal to the set 𝕊 of

feasible points at 𝒙 = 𝒙∗

2025-04-15Advanced computational statistics L4 14

• Recall example about D-optimal design for quadratic regression without
intercept; optimal values for 𝑤1 and 𝑤2 are of interest (𝑝 = 2, 𝑚 = 1).

• Transformation method: optimise over 𝑤1

• Modification of algorithm: optimise over (𝑤1, 𝑤2)

• Lagrange multiplier method: search space is (𝑤1, 𝑤2, 𝜆)

• If transformation method possible and not too complicated, it has
potential to deliver results fastest

• Transformation and modification methods require creativity; Lagrange
can be applied generally

In general:
dim = 𝑝 – 𝑚,

dim = 𝑝,

dim = 𝑝 + 𝑚

• Constrained optimisation problem:

• 𝒙 p-dimensional vector, 𝑔: ℝ𝑝 → ℝ function

• We search 𝒙∗ with 𝑔 𝒙∗ = max 𝑔(𝒙)

• Subject to ℎ𝑖 𝒙∗ = 0, 𝑖 = 1, … , 𝑚

• and 𝑞𝑖 𝒙∗ ≤ 0, 𝑖 = 1, … , 𝑛 (inequality constraints)

• Set of feasible points 𝕊 = 𝒙 ∈ ℝ𝑝 ℎ𝑖 𝒙 = 0, 𝑖 = 1, … , 𝑚; 𝑞𝑖 𝒙 ≤ 0, 𝑖 = 1, … , 𝑛}

• An inequality constraint 𝑞i 𝒙 is called active, if 𝑞i 𝒙∗ = 0

• If it is not active (𝑞i 𝒙∗ < 0), 𝒙∗ is a local optimum of the unconstrained
optimisation problem

2025-04-15Advanced computational statistics L4 15

• Lasso’s objective function to minimise:

𝑔 ෡𝜷 = 𝑿෡𝜷 − 𝒚
2

+ 𝜆 σ𝑖=1
𝑝 ෡𝛽𝑖

• Alternatively, one can solve the constrained
problem:

minimise: 𝑔 ෡𝜷 = 𝑿෡𝜷 − 𝒚
2

subject to ෡𝜷
1

= σ𝑖=1
𝑝 ෡𝛽𝑖 ≤ 𝑡

• For 𝑝 = 2 and 𝑡 = 1, the set of feasible points

𝕊 = ෡𝜷 ∈ ℝ𝑝 σ𝑖=1
𝑝 ෡𝛽𝑖 ≤ 𝑡} is inside of the blue area

2025-04-15Advanced computational statistics L4 16

• Approaches to handle inequality constraints:

• Generalisation of Lagrange multipliers
(Karush–Kuhn–Tucker approach)

• penalty method

• barrier method (also called: interior-point method)

2025-04-15Advanced computational statistics L4 17

• Constrained optimisation problem:

• 𝒙 p-dimensional vector, 𝑔: ℝ𝑝 → ℝ function

• We search 𝒙∗ with 𝑔 𝒙∗ = max 𝑔(𝒙)

• Subject to ℎ𝑖 𝒙∗ = 0, 𝑖 = 1, … , 𝑚

• and 𝑞𝑖 𝒙∗ ≤ 0, 𝑖 = 1, … , 𝑛 (inequality constraints)

• Karush–Kuhn–Tucker (KKT) approach uses generalised Lagrangian
ℒ 𝒙, 𝝀, 𝝁 = 𝑔 𝒙 − 𝝀𝑇𝒉 𝒙 − 𝝁𝑇𝒒 𝒙 with
𝒉 𝒙 = (ℎ1 𝒙 , … , ℎ𝑚 𝒙)𝑇 , 𝝀 ∈ ℝ𝒎, 𝒒 𝒙 = (𝑞1 𝒙 , … , 𝑞𝑛 𝒙)𝑇 , 𝝁 ∈ ℝ𝒏

• Instead of above constrained optimisation, search stationary point (𝒙∗, 𝝀, 𝝁 ≥ 𝟎)
of ℒ 𝒙, 𝝀, 𝝁 = 𝑔 𝒙 − 𝝀𝑇𝒉 𝒙 − 𝝁𝑇𝒒 𝒙 .
For 𝒙∗ being a solution of the constrained problem, following condition required:
“for all 𝑖 = 1, … , 𝑛: 𝑞𝑖 𝒙∗ = 0 or 𝜇𝑖 = 0”

2025-04-15Advanced computational statistics L4 18

• Constrained LS-minimisation:

• 𝒙 p-dim., 𝑔: ℝ𝑝 → ℝ, 𝑔 𝒙 = 𝑨𝒙 − 𝒃
2

2

• 𝑔 𝒙 = min 𝑔(𝒙) subject to 𝑞1 𝒙 = | 𝒙 |2
2 − 1 ≤ 0 (inequality constraint)

• Generalised Lagrangian (KKT): ℒ 𝒙, 𝜇 = 𝑨𝒙 − 𝒃
2

2
+ 𝜇(𝒙 2

2 − 1) with 𝜇 ≥ 0

• 𝜕

𝜕𝒙
ℒ 𝒙, 𝜇 = 𝑨𝑻𝑨𝒙 − 𝑨𝑻𝒃 + 2𝜇𝒙; setting this to 0 gives 𝒙 = (𝑨𝑻𝑨 + 2𝜇𝑰)−1 𝑨𝑻𝒃

• 𝜕

𝜕𝜇
ℒ 𝒙, 𝜇 = 1 − 𝒙 2

2

2025-04-15Advanced computational statistics L4 19

𝒙 2 ≤ 1

• Constrained optimisation problem:

• 𝒙 p-dimensional vector, 𝑔: ℝ𝑝 → ℝ function

• We search 𝒙∗ with 𝑔 𝒙∗ = max 𝑔(𝒙)

• Subject to 𝑞𝑖 𝒙∗ ≤ 0, 𝑖 = 1, … , 𝑛 (inequality constraints)

• Idea: Modify 𝑔 to ෤𝑔 such that the algorithm finds only local maxima which
fulfil 𝑞𝑖 𝒙∗ ≤ 0, 𝑖 = 1, … , 𝑛, even if optimisation done unconstrained

• Penalty methods: Set ෤𝑔 = 𝑔 on 𝕊 = 𝒙 𝑞𝑖 𝒙 ≤ 0, 𝑖 = 1, … , 𝑛} and add a
(negative) penalty if 𝑞𝑖 𝒙 > 0 for some 𝑖

• Barrier methods: Set ෤𝑔 = −∞ if 𝑞𝑖 𝒙 > 0 for some 𝑖 and 𝑔 is modified on
𝕊 = {𝒙|𝑞𝑖 𝒙 ≤ 0, 𝑖 = 1, … , 𝑛}

2025-04-15Advanced computational statistics L4 20

2025-04-15Advanced computational statistics L4 21

• Example: maximise 𝑔(𝑥) on range 𝑥 ≤ 10

• Add barrier function 𝜇(𝑡)𝑏 𝑥

• ෤𝑔 𝑥 = 𝑔 𝑥 + 𝜇(𝑡)𝑏 𝑥 should be small close
to 10 for 𝑥 < 10, and −∞ for 𝑥 > 10

• Log barrier: 𝑏 𝑥 = log(10 − 𝑥)

• Solve maximisation for ෤𝑔 𝑥

• Adapt barrier with smaller 𝜇(𝑡)

• If 𝜇(𝑡) → 0, local maxima of 𝑔 can be detected,
both at the boundary and in the interior

𝜇(𝑡) = 0.2𝜇(𝑡) = 0.04

Two 2d-animations: http://apmonitor.com/me575/index.php/Main/InteriorPointMethod

http://apmonitor.com/me575/index.php/Main/InteriorPointMethod

2025-04-15Advanced computational statistics L4 22

• Example: maximise 𝑔(𝑥) on range 𝑥 ≤ 10

• Adapt barrier with smaller 𝜇(𝑡)

• If 𝜇(𝑡) → 0, local maxima of 𝑔 can be detected,
both at the boundary and in the interior

• Use a sequence 𝜇(1) > 𝜇(2) > ⋯ > 𝜇 𝑘 > ⋯
with 𝜇(𝑡) → 0:

• Solution for optimisation with 𝜇(1) is 𝑥(∗1)

• Use 𝑥(∗1) as starting value for optimisation
with 𝜇(2); solution is 𝑥(∗2)

• Use 𝑥(∗2) as starting value for optimisation
with 𝜇(3); solution is 𝑥(∗3)

• …

𝜇(𝑡) = 0.04

constrOptim

• Constrained optimisation problem:

• 𝒙 p-dimensional vector, 𝑔: ℝ𝑝 → ℝ function

• We search 𝒙∗ with 𝑔 𝒙∗ = max 𝑔(𝒙)

• Subject to 𝑼𝒙∗ − 𝒄 ≥ 𝟎, 𝑼 ∈ ℝ𝑛×𝑝, 𝒄 ∈ ℝ𝑛 (linear inequality constraints;

rows of 𝑼 are 𝒖𝑖
𝑇)

• The R-function constrOptim uses log barrier functions

• constrOptim calls repeatedly optim for function ෤𝑔 with barrier; barrier

adapted between iterations: 𝜇(𝑡) decreases

• E.g: ෤𝑔 𝒙 = 𝑔 𝒙 + 𝜇(𝑡) σ𝑖=1
𝑛 log(𝒖𝑖

𝑇𝒙 − 𝑐𝑖) (for maximisation;

𝑔 𝒙 − 𝜇(𝑡) … for minimisation)

2025-04-15Advanced computational statistics L4 23

• Example: Quadratic regression for fertilizer-yield-relationship with
fertilizer 𝑥 ∈ [0,1.2]. Experiment planned with

• proportion 𝑤𝑖 of observations using 𝑥𝑖 ∈ [0,1.2] (can be chosen by
experimenter), 𝑖 = 1,2,3; 𝑤3 = 1 − 𝑤1 − 𝑤2.

• Parameters to be optimised: 𝒚 = (𝑥1, 𝑥2, 𝑥3, 𝑤1, 𝑤2)𝑇

• D-optimal design maximises 𝑔 𝒚 = det σ𝑖=1
3 𝑤𝑖𝒇 𝑥𝑖 𝒇 𝑥𝑖

𝑇 subject to

𝑥𝑖 ≥ 0, 1.2 − 𝑥𝑖 ≥ 0, 𝑖 = 1,2,3, 𝑤1 ≥ 0, 𝑤2 ≥ 0, 1 − 𝑤1 − 𝑤2 ≥ 0

• Construct 𝑼 and 𝒄 such that constraints can be written as 𝑼𝒚 − 𝒄 ≥ 𝟎

2025-04-15Advanced computational statistics L4 24

• 𝒚 = (𝑥1, 𝑥2, 𝑥3, 𝑤1, 𝑤2)𝑇, 𝑤3 = 1 − 𝑤1 − 𝑤2

• D-optimal design maximises 𝑔 𝒚 = det σ𝑖=1
3 𝑤𝑖𝒇 𝑥𝑖 𝒇 𝑥𝑖

𝑇 subject to
𝑥𝑖 ≥ 0, 1.2 − 𝑥𝑖 ≥ 0, 𝑖 = 1,2,3, 𝑤1 ≥ 0, 𝑤2 ≥ 0, 1 − 𝑤1 − 𝑤2 ≥ 0

• 𝑼𝒚 − 𝒄 ≥ 𝟎 with

𝑼 =

1 0 0 0 0
−1 0 0 0 0
0 1 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 −1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 −1 −1

, 𝒄 =

0
−1.2

0
−1.2

0
−1.2

0
0

−1

2025-04-15Advanced computational statistics L4 25

constrOptim

• R-code:

• U <- matrix(0, nrow=9, ncol=5)

U[1,1] <- U[3,2] <- U[5,3] <- U[7,4] <- U[8,5] <- 1

U[2,1] <- U[4,2] <- U[6,3] <- U[9,4] <- U[9,5] <- -1

d <- c(rep(c(0, -1.2), 3), 0, 0, -1)

• startv <- c(0.2, 0.3, 0.4, 0.2, 0.2)

• # Nelder-Mead as inner optimisation method:

res <- constrOptim(startv, f=g, grad=NULL, ui=U, ci=d,

control=list(fnscale=-1))

round(res$par, 3)

• Result: 0.000 0.597 1.200 0.331 0.333

• Note: In this case, the solution can also be calculated algebraically (optimal
design theory)

2025-04-15Advanced computational statistics L4 26

Python: scipy.optimize.minimize
Julia: optimize! in JuMP, using Ipopt
Matlab: fmincon

• Limitations of barrier method (Lange, 2010, page 301):

• Iterations within iterations necessary

• No obvious choice how fast 𝜇(𝑡) should go to 0

• A too small value 𝜇(𝑡) can lead to numerical instability

2025-04-15Advanced computational statistics L4 27

• Optimisation problem with closed and convex subset constraint:

• 𝒙 p-dimensional vector, 𝑔: ℝ𝑝 → ℝ continuously differentiable function

• We search 𝒙∗ with 𝑔 𝒙∗ = max 𝑔(𝒙)

• Subject to 𝒙 ∈ Ω with Ω being a closed and
convex set

• Set of feasible points 𝕊 = {𝒙 ∈ Ω ⊆ ℝ𝑝}

• Note that in the constrained lasso example,

Ω = መ𝛽 ෡𝜷
1

= σ𝑖=1
𝑝 ෡𝛽𝑖 ≤ 𝑡 which is closed and convex

2025-04-15Advanced computational statistics L4 28

• Definition: Let Ω be a closed and convex
set. The normal cone at 𝒙 ∈ Ω is defined
as
𝑁Ω 𝒙 =

𝒅 ∈ ℝ𝑝 𝒅T 𝒚 − 𝒙 ≤ 0 for all 𝒚 ∈ Ω

• Note: 𝒅T𝒛 ≤ 0 means that the angle
between 𝒅 and 𝒛 is at least 90 degrees

• Some examples for 𝑁Ω 𝒙 (𝒙 = red dots)

2025-04-15Advanced computational statistics L4 29

• Theorem: If 𝒙∗ ∈ Ω is a local maximum in the optimisation problem with a
closed and convex subset constraint, then 𝑔′ 𝒙∗ ∈ 𝑁Ω 𝒙∗ .

• Corollary: If 𝑔 is a concave function and we
consider the optimisation problem with a closed
and convex subset constraint, then:
𝒙∗ ∈ Ω is a local maximum ⇔ 𝑔′ 𝒙∗ ∈ 𝑁Ω 𝒙∗ .

2025-04-15Advanced computational statistics L4 30

• Definition: For a closed and convex
set Ω, we define the Euclidian
projection as

𝑃Ω 𝒙 = arg min
𝐳∈Ω

{ 𝒛 − 𝒙 }

2025-04-15Advanced computational statistics L4 31

Projected gradient algorithm

• Start with some 𝒙 0 ∈ Ω.

• For given 𝒙 𝑘 , compute next iteration

𝒙 𝑘+1 as:

• 𝒙 𝑘+1 = 𝑃Ω 𝒙(𝑘) + 𝛼𝑘𝑔′ 𝒙(𝑘)

• Until 𝒙 𝑘 and 𝒙 𝑘+1 are close and fulfil
a stopping criterion

• If 𝑔 is Lipschitz-smooth, one can choose

𝛼𝑘 =
1

𝐿
, otherwise apply back-tracking

2025-04-15Advanced computational statistics L4 32

• The projected gradient algorithm generalizes the steepest ascent/descent
algorithm to handle a subset constraint

• In the projected gradient algorithm, the Euclidian projection is computed,

𝑃Ω 𝒙(𝑘) + 𝛼𝑘𝑔′ 𝒙(𝑘)

• A requirement for the algorithm is that this computation is feasible and
not a more complicated minimisation problem than optimising 𝑔 itself …

2025-04-15Advanced computational statistics L4 33

• In the 2d-lasso-case, the Euclidian projection can be
computed in an ad-hoc way

• For lasso in higher dimensions, one can do Euclidian
projection onto the 𝐿1-norm ball (see Condat, 2016;
Duchi et al., 2008; Held et al., 1974) and some R-code
on the course homepage

• If only some coordinates, 𝐼 ⊆ {1, … , 𝑝}, are regularised,
Ω = 𝒃 σ𝑖∈𝐼 𝑏𝑖 ≤ 𝑡

• Then, we can apply Euclidian projection onto 𝐿1-norm in the smaller space

ℝ 𝐼 (for coordinates 𝑖 ∈ 𝐼 only), and keep 𝑏𝑖 for 𝑖 ∉ 𝐼 when computing 𝑃Ω(𝒃)

2025-04-15Advanced computational statistics L4 34

Condat L (2016). Fast projection onto the simplex and the ℓ1 ball. Mathematical Programming, Series A, 158, 575–585.
Duchi J, Shalev-Shwartz S, Singer Y, Chandra T (2008). Efficient Projections onto the ℓ1-Ball for Learning in High
 Dimensions. International Conference on Machine Learning (ICML).
Held M, Wolfe P, Crowder H (1974). Validation of subgradient optimization. Mathematical Programming 6, 62–88.

Frank-Wolfe algorithm

• Start with some 𝒙 0 ∈ Ω.

• For given 𝒙 𝑘 , compute next iteration 𝒙 𝑘+1 as:

• ഥ𝒙(𝑘) = argmaxഥ𝒙∈Ω 𝒈′ 𝒙 𝑘 𝑇
ഥ𝒙

• 𝒙 𝑘+1 = 𝒙(𝑘) + 𝛼𝑘 ഥ𝒙(𝑘) − 𝒙 𝑘

• Until 𝒙 𝑘 and 𝒙 𝑘+1 are close and fulfil a stopping criterion

• Sublinear convergence is ensured for convex, L-smooth function 𝑔 and Ω
closed bounded convex set when steplength 𝛼𝑘 = 2/(𝑘 + 2) is used, see
Theorem 7.9 of Wright and Recht (2022).

2025-04-15Advanced computational statistics L4 35

argmin instead of argmax
for a minimisation problem

2025-04-15Advanced computational statistics L4 36

• Regression model 𝒚 = 𝑿𝜷 + 𝜺, Cov ෡𝜷 = (𝑿𝑻𝑿)−𝟏· 𝑐𝑜𝑛𝑠𝑡

• Example: cubic regression,

𝑦𝑖 = 𝛽0 + 𝛽1𝑤𝑖 + 𝛽2𝑤𝑖
2 + 𝛽3𝑤𝑖

3 + 𝜀𝑖, 𝑿 =

1 𝑤1 𝑤1
2 𝑤1

3

1 𝑤2 𝑤2
2 𝑤2

3

… … … …
1 𝑤𝑛 𝑤𝑛

2 𝑤𝑛
3

𝑤𝑖 can be chosen in [-1, 1], but practical circumstances require here a distance between design
points of 0.05

• Therefore, we allow design points {-1, -0.95, -0.9, …, 1} and at most one observation can be
done at each point

• A design can be represented by a vector in 𝕊 = 0, 1 41 where 0 means that no observation is
done at a design point and 1 means that one observation is made there

• Each observation has a cost; and we want to minimise the penalized D-optimality
#observations ∗ 0.2 − log det 𝑿𝑻𝑿

2025-04-15Advanced computational statistics L4 37

𝕊 ={ 𝑛1, … , 𝑛41 , 𝑛𝑖 ∈ ℕ0}

for a given total sample size 𝑛

• Regression model 𝒚 = 𝑿𝜷 + 𝜺, Cov ෡𝜷 = (𝑿𝑻𝑿)−𝟏· 𝑐𝑜𝑛𝑠𝑡

• Example: cubic regression,

𝑦𝑖 = 𝛽0 + 𝛽1𝑤𝑖 + 𝛽2𝑤𝑖
2 + 𝛽3𝑤𝑖

3 + 𝜀𝑖, 𝑿 =

1 𝑤1 𝑤1
2 𝑤1

3

1 𝑤2 𝑤2
2 𝑤2

3

… … … …
1 𝑤𝑛 𝑤𝑛

2 𝑤𝑛
3

𝑤𝑖 can be chosen in [-1, 1], but practical circumstances require here a distance
between design points of 0.05; hence, we allow design points {-1, -0.95, -0.9, …, 1}

• A design can be represented (coded) in different ways, e.g.,

• by a vector in 𝕊 ={ 𝑛1, … , 𝑛41 , 𝑛𝑖 ∈ ℕ0} with 𝑛1 being number of observations
made at 𝑤𝑖

• by a (sorted) vector 𝑤1, … , 𝑤𝑛 in −1, −0.95, −0.9, … , 1 𝑛

2025-04-15Advanced computational statistics L4 38

• Regression model 𝒚 = 𝑿𝜷 + 𝜺, Cov ෡𝜷 = (𝑿𝑻𝑿)−𝟏· 𝑐𝑜𝑛𝑠𝑡

• Example: cubic regression,

𝑦𝑖 = 𝛽0 + 𝛽1𝑤𝑖 + 𝛽2𝑤𝑖
2 + 𝛽3𝑤𝑖

3 + 𝜀𝑖, 𝑿 =

1 𝑤1 𝑤1
2 𝑤1

3

1 𝑤2 𝑤2
2 𝑤2

3

… … … …
1 𝑤𝑛 𝑤𝑛

2 𝑤𝑛
3

𝑤𝑖 can be chosen in [-1, 1], but practical circumstances require here a distance
between design points of 0.05; hence, we allow design points {-1, -0.95, -0.9, …, 1}

• We use the representation as vectors in 𝕊 ={ 𝑛1, … , 𝑛41 , 𝑛𝑖 ∈ ℕ0} with 𝑛1 being
number of observations made at 𝑤𝑖

• We have a restricted budget allowing for 𝑛 observations, i.e. σ𝑖=1
41 𝑛𝑖 = 𝑛.

• We want to minimise the D-criterion −log det 𝑿𝑻𝑿

2025-04-15Advanced computational statistics L4 39

• We can easily adjust the simulated annealing algorithm for combinatorial

optimisation to handle the equality constraint σ𝑖=1
41 𝑛𝑖 = 𝑛:

• Start with a design fulfilling the constraint

• Define neighbourhood of a design such that all neighbours fulfil restriction

(proposal distribution has probability 1 on designs with σ𝑖=1
41 𝑛𝑖 = 𝑛)

• An intuitive possibility is to exchange observations:

(2, 0, 0, 4, 5, 0, 0, 0, 3, 1, 0, …, 0, 4) →
(2, 1, 0, 4, 4, 0, 0, 0, 3, 1, 0, …, 0, 4)

• Search randomly a location (here of the 41 𝑤𝑖 ’s) which has 𝑛𝑖 > 0 where an
observation is removed and another location where one is added

2025-04-15Advanced computational statistics L4 40

• Start design fulfilling constraint
des <- rep(0, 41)

indices <- 1:41

for (i in 1:n){

ind <- sample(indices, size=1)

 des[ind] <- des[ind]+1

}

• Determine randomly a neighbour (exchanging points of observation)
irem <- sample(indices[des>0], size=1)

iadd <- sample(indices, size=1)

desnew <- des

desnew[irem] <- desnew[irem]-1

desnew[iadd] <- desnew[iadd]+1

2025-04-15Advanced computational statistics L4 41

• A design can be represented (coded) in different ways, e.g.,

• by a vector in 𝕊 ={ 𝑛1, … , 𝑛41 , 𝑛𝑖 ∈ ℕ0} with 𝑛1 being number of
observations made at 𝑤𝑖

• by a (sorted) vector 𝑤1, … , 𝑤41 in −1, −0.95, −0.9, … , 1 41

• We can translate a design des coded in the first way to a vector xv of design

points (second way) as follows:

• w <- seq(-1, 1, by=0.05)

xv <- rep(w, des)

• The design matrix X is then:

• X <- cbind(rep(1, sum(des)), xv, xv^2, xv^3)

2025-04-15Advanced computational statistics L4 42

Python: xv = np.repeat(w, des)
Julia: xv = repeat(w, inner = des)
Matlab: xv = repelem(w, des);

Python: X = np.column_stack((np.ones_like(xv), xv, xv**2, xv**3))
Julia: X = hcat(ones(length(xv)), xv, xv.^2, xv.^3)

Matlab: X = [ones(length(xv), 1), xv', (xv').^2, (xv').^3];

	Start / Välkommen
	Bild 1: Advanced computational statistics, lecture 4
	Bild 2: Course schedule
	Bild 3: Today’s schedule: Optimisation with constraints
	Bild 4: Optimisation with equality constraints
	Bild 5: Optimisation with equality constraints
	Bild 6: Equality constraints: transformation
	Bild 7: Equality constraints: transformation
	Bild 8: Equality constraints: modification of algorithms
	Bild 9: Equality constraints: Lagrange multipliers
	Bild 10: Equality constraints: Lagrange multipliers
	Bild 11: Equality constraints: Lagrange multipliers
	Bild 12: Equality constraints: Lagrange multipliers
	Bild 13: Equality constraints: Lagrange multipliers
	Bild 14: Equality constraints: Comparison
	Bild 15: Optimisation with inequality constraints
	Bild 16: Inequality constraints – lasso example
	Bild 17: Optimisation with inequality constraints
	Bild 18: Inequality constraints: Karush–Kuhn–Tucker appr.
	Bild 19: Inequality constraints: KKT, example
	Bild 20: Inequality constraints: penalty and barrier methods
	Bild 21: Inequality constraints: Barrier method
	Bild 22: Inequality constraints: Barrier method
	Bild 23: Linear inequality constraints: R-function constrOptim
	Bild 24: Linear inequality constraints: barrier method
	Bild 25: Linear inequality constraints: barrier method
	Bild 26: Linear inequality constraints: R-function constrOptim
	Bild 27: Linear inequality constraints: barrier method
	Bild 28: Optimisation with a subset constraint
	Bild 29: Optimisation with a subset constraint
	Bild 30: Optimisation with a subset constraint
	Bild 31: Optimisation with a subset constraint
	Bild 32: Optimisation with a subset constraint
	Bild 33: Optimisation with a subset constraint
	Bild 34: Euclidian projection for lasso
	Bild 35: Optimisation with a subset constraint
	Bild 36: Combinatorial constrained optimisation
	Bild 37: Recall L3 and Exercise 3.3: Maximising information of experimental designs
	Bild 38: Constrained optimisation to determine design
	Bild 39: Constrained optimisation to determine design
	Bild 40: Constrained optimisation to determine design
	Bild 41: Constrained optimisation to determine design
	Bild 42: Constrained optimisation to determine design

