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Course schedule

Topic 1: Gradient based optimisation

Topic 2: Stochastic gradient based optimisation

Topic 3: Gradient free optimisation

Topic 4: Optimisation with constraints

Topic 5: EM algorithm and bootstrap

Topic 6: Simulation of random variables

Topic 7: Numerical and Monte Carlo integration; importance sampling

Course homepage: http://www.adoptdesign.de/frankmillereu/adcompstat2025.html

Includes schedule, reading material, lecture notes, assignments
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Today’s schedule: Optimisation with constraints

« Equality constraints
 Transformation to an unconstrained problem
« Modification of iterative algorithm to handle constraints
 Lagrange multipliers

 Inequality constraints
« Karush—Kuhn—Tucker approach
 penalty method
* barrier method

» Subset constraint

e Combinatorial constrained optimisation
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Optimisation with equality constraints

» Optimisation problem:
« x p-dimensional vector, g: RP - R function
« We search x* with g(x*) = max g(x)
» Subject to h;(x*) =0, i =1, ..., m (equality constraints)
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Optimisation with equality constraints

 Optimisation problem:

« x p-dimensional vector, g: RP - R function

« We search x* with g(x*) = max g(x)

* Subject to h;(x*) =0, i = 1,..., m (equality constraints)
« Approaches:

 Transformation to an unconstrained problem
(problem specific approach)

« Modification of iterative algorithm to handle constraints
(algorithm specific approach)

« Lagrange multipliers (general approach)
e S={x e RP|h;(x) =0, i =1,...,m} called feasible points
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Equality constraints: transformation

« Example: Cubic regression model for fertilizer-yield-relationship with
fertilizer x € [0,1.2]. Experiment planned with

 proportion w; of observations using x; = 0,
 proportion w, using x, = 0.4,
 proportion ws using x; = 0.8,
e proportion w, using x, = 1.2.
* Note thatw; + w, + w3y + w, = 1.
 Information matrix M (proportional to inverse of covariance matrix for

s oA A AT
(IBO' lgl' :BZJ 183) ):
M = XTdiag(wy, ..., W)X = Y wi f () f(x)T with f(x) = (1, x,x2,x3)T
» The D-optimal design maximises
gw) = det(Xi, wif(x;) f(x)T) subjectto hy(w) =1 3% w; =0

6
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Equality constraints: transformation

« The D-optimal design maximises
gw) = det(Ti; wif (x) f(x;)T) subject to hy(w) = 1= Y7, w; =0

e Transformation: 1 =Y, w; =0 = w,=1—w; —w, —ws
gwy, Wy, ws) = det(ZiB=1 w; f (x;) f(xi)T + (1 —wy—w, — Ws)f(x4)f(x4)T)

» The constrained optimisation problem
max. g(wy, wy, w3, w,) subj. to hy (wy, wy,wa,wy) =1 =37 w; =0
is equivalent to the unconstrained optimisation problem
maximise §(wy, w,, W3).

111

14 _3_1
v Wa=1—3=1

» Solution with unconstrained optimisation: (wy, w,, ws) = (
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Equality constraints: modification of algorithms

 Constrained optimisation problem:
« x p-dimensional vector, g: RP - R function
« We search x* with g(x*) = max g(x)
* Subjectto Ax* — b =0, A € R™*P, b € R™ (linear equality constraints)

« Example: Particle Swarm Optimisation (see L3)

¢ MOVGment Of partiCle i at iteratiOn t+1: Scalar random variables (SPSO2011),
. x§t+1) _ x(t) n v§t+1) not random vectors (SPSO2007)
o 2(tTD) _ (t) (t+1) . (1) (1) (t+1) (1) (t)
v, =wv;” + R (pbest,i —Xx; )+ 3R, (gbest —X; )

. Rit“) and Rgtﬂ) are uniformly distributed, runif ()

« Ensure that 4x'” = b and Avgo) = 0, then Axgt) = bforalliandt

i
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Equality constraints: Lagrange multipliers

- Example: D-optimal design for quadratic
NN
\\\%jﬁ

regression without intercept. Experiment
planned on x € [0,1] with S

08

* prop. w; of observations using x; = 0.5, z;i“

* prop. w, using x, = 1, C | : :_;:

*w; +w, =1. o ' “-w

11 - | ==

°*g (W) — det( %1 Lll ;3 + W» (1 1)) o.lo ofz 0.|4 o_le o_la 1_|0
5 E W,

c h(w) =1—w; —w,
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Equality constraints: Lagrange multipliers
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 Feasible points w (h(w) = 0) E—
. . , These two are orthogonal at constrained max.;
* Direction of steepest ascent, g’ (W) mm=p| direction orthogonal to feasible points is k' (w)
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Equality constraints: Lagranae multipliers

10

[ ]
08

el e

1
g(w) = det(w, (; _)+w2 G 1)
8

16

06

[
04

hiw)=1—-—w; —w,

g’ (w) direction of steepest ascent
h'(w) = (—1,—1)T (orthogonal to feasible points) -

02

0.0 0.2 0.4 06 0.8 1.0

 Condition for constrained maximum: g'(w) = 1 h'(w)
c g'(w)—Ah'(w) =0
* Define L(w, 1) = g(w) — 1 h(w) and determine stationary point
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Equality constraints: Lagrange multipliers

 Constrained optimisation problem:
« x p-dimensional vector, g: RP - R function
« We search x* with g(x*) = max g(x)
» Subject to h;(x*) =0, i =1, ..., m (equality constraints)
« Lagrange:
Let L(x,2) = g(x) — ATh(x), h(x) = (h{(x), ..., h,,(x))T, 1 € R™ and
g, h4, ..., h,, are continuously differentiable. If g has a local maximum at
some point x* with h(x*) = 0 (i.e. in the constrained maximisation
problem) and at which the gradients of h4, ..., h,, are linearly independent,

then there exists a A such that gradient £'(x*, 1) = 0 (i.e. stationary point
in the unconstrained problem).
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Equality constraints: Lagrange multipliers

 Constrained optimisation problem:
« x p-dimensional vector, g: RP - R function
« We search x* with g(x*) = max g(x)
« Subject to h;(x*) =0, i =1, ..., m (equality constraints)

* Unconstrained problem:
Search stationary point (x*, 1) of L(x, 1) = g(x) — ATh(x).

e Note:
« 2> L(x*,A) = 0 ensures h;(x*) = 0

. %L (x*,A) = 0 ensures that gradient g’'(x*) is orthogonal to the set S of
feasible points at x = x*
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Equality constraints: Comparison

« Recall example about D-optimal design for quadratic regression without
intercept; optimal values for w; and w, are of interest (p = 2, m = 1).

In general:
 Transformation method: optimise over w, dim =p - m,
« Modification of algorithm: optimise over (w;, w,) dim = p,

 Lagrange multiplier method: search space is (w;, w,,A) dim=p + m

« If transformation method possible and not too complicated, it has
potential to deliver results fastest

 Transformation and modification methods require creativity; Lagrange
can be applied generally

LINKOPING
UNIVERSITY



Advanced computational statistics L4 2025-04-15 15

Optimisation with inequality constraints

 Constrained optimisation problem:
« x p-dimensional vector, g: RP - R function
« We search x* with g(x*) = max g(x)
* Subjectto h;(x*) =0, i=1,..,m
« and q;(x*) <0, i =1,...,n (inequality constraints)
 Set of feasible points S = {x € R?|h;(x) =0, i=1,..,m;q;(x) <0, i =1,...,n}

« An inequality constraint g;(x) is called active, if g;(x*) = 0

e If it is not active (g;(x*) < 0), x* is a local optimum of the unconstrained
optimisation problem
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Inequality constraints - lasso example

 Lasso’s objective function to minimise:

9(B) = [|1XB —y|" + 22,13

1.0

0.5

« Alternatively, one can solve the constrained
problem:

minimise: gA(ﬁ) = |xB - y|°
subject to [|B|, = Xi_,|Bi| <t

0.0

-0.5

AN
AN

* For p = 2 and t = 1, the set of feasible points g
S ={B € RP| XF__|B;| < t}is inside of the blue area

-1.0
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Optimisation with inequality constraints

« Approaches to handle inequality constraints:

 Generalisation of Lagrange multipliers
(Karush—Kuhn-Tucker approach)

 penalty method
« barrier method (also called: interior-point method)
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Inequality constraints: Karush-Kuhn-Tucker appr.

Constrained optimisation problem:
« x p-dimensional vector, g: RP - R function
* We search x* with g(x*) = max g(x)
* Subjectto h;(x*) =0, i=1,..,m
« and q;(x*) <0, i =1,...,n (inequality constraints)

Karush—Kuhn—Tucker (KKT) approach uses generalised Lagrangian
L(x,4,p1) = g(x) — A"h(x) — p"q(x) with
h(x) = (hy(x), .., hip(x))", 4 € R™, q(x) = (q1(), ..., gn(x))", p € R"

Instead of above constrained optimisation, search stationary point (x*, 4, u = 0)

of L(x,A, 1) = g(x) — A"h(x) — p"q(x).
For x* being a solution of the constrained problem, following condition required:
“foralli=1,...,n:q;(x*) =0o0ru; =07
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Inequality constraints: KKT, example

* Constrained LS-minimisation:
» x p-dim., g: R? > R, g(x) = ||Ax — b||z lxll, < 1
* g(x) = min g(x) subject to g;(x) = ||x||5 — 1 < 0 (inequality constraint)
- Generalised Lagrangian (KKT): £(x, u) = ||Ax — b| |§ +u(lx)|3 — 1) withu >0
. 0 — AT A~ _ AT . : - - _ T —1 4T
—L(x,u) = A"Ax — A" b + 2ux; setting this to 0 gives x = (A"A + 2ul)"" A" b

» 2L(x,p) =1 |Ix]I3 e
au . \\\\\§§
.
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Inequality constraints: penalty and barrier methods

 Constrained optimisation problem:
« x p-dimensional vector, g: RP - R function
« We search x* with g(x*) = max g(x)
* Subjectto q;(x*) <0, i =1, ...,n (inequality constraints)

 Idea: Modify g to g such that the algorithm finds only local maxima which
fulfil g;(x*) <0, i =1, ...,n, even if optimisation done unconstrained

« Penalty methods: Set g =gonS ={x|q;(x) <0, i=1,..,n}and add a
(negative) penalty if g;(x) > 0 for some i

« Barrier methods: Set § = — if g;(x) > 0 for some i and g is modified on
S ={x|q;(x) <0, i=1,..,n}
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Inequality constraints: Barrier method

« Example: maximise g(x) on range x < 10

e Add barrier function ;‘© b (x)

e §(x) = g(x)+ 1'Yb(x) should be small close /
{0 10 for x < 10, and —oo for x > 10 ST T

* Log barrier: b(x) = log(10 — x) 57 -

 Solve maximisation for g(x)

« Adapt barrier with smaller u(®

« If u®® - 0, local maxima of g can be detected, . . . . .
both at the boundary and in the interior '

u® =0.04

Two 2d-animations: http://apmonitor.com/me575/index.php/Main/InteriorPointMethod
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Inequality constraints: Barrier method

« Example: maximise g(x) on range x < 10
« Adapt barrier with smaller u(®

« If u® - 0, local maxima of g can be detected,
both at the boundary and in the interior

« Use asequence u > @ > ... > 40 > ... =
with u® - 0:
» Solution for optimisation with ¥ is x*1
» Use x*V) as starting value for optimisation
with u(?); solution is x*%)
» Use x(*2) as starting value for optimisation
with u®); solution is x*3)
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Linear inequality constraints: R-function constroptim

 Constrained optimisation problem:
« x p-dimensional vector, g: RP - R function
« We search x* with g(x*) = max g(x)
* Subjectto Ux* —c = 0, U € R"™P,c € R" (linear inequality constraints;
rows of U are u;)

* The R-function constrOptim uses log barrier functions

* constrOptim calls repeatedly optim for function § with barrier; barrier
adapted between iterations: (¥ decreases

e E.g: §(x) = g(x) + u®O Y™ log(u] x — ¢;) (for maximisation;
g(x) — u® ... for minimisation)
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Linedr inequality constraints: barrier method

« Example: Quadratic regression for fertilizer-yield-relationship with
fertilizer x € [0,1.2]. Experiment planned with

 proportion w; of observations using x; € [0,1.2] (can be chosen by
experimenter),i = 1,2,3; wg =1 —w; — w,.

« Parameters to be optimised: y = (x4, x5, x3, wy, wy)!

- D-optimal design maximises g(y) = det(X3_, wif(x;) f(x;)T) subject to
x;=20,12—-—x;,=20,i=123,w; =20,w, =20,1—w; —w, =0

 Construct U and c such that constraints can be writtenas Uy —c > 0
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Linear inequality constraints: barrier method

_ T _
Yy = (X1, X2,X3, W, W) , w3 =1—w; —w,

- D-optimal design maximises g(y) = det(X;-; wif (x;) f(x)T) subject to
x;=20,12—-x;=20,i=123,w; =20,w, 20,1 —w; —w, =20

Uy — ¢ = 0 with
0 0
-1 0 \ /—1.2\

—
p—
_ O O

O OO OO OO
-0 O O O

|
p—

O O O O
o O O
’LOHOOOOOO
I
HHOOOOO

I

p—

()

LINKOPING
II.“ UNIVERSITY



Advanced computational statistics L4 2025-04-15 26

Linear inequality constraints: R-funNction constroptim
« R-code:

e U <- matrix (0, nrow=9, ncol=5)
U[1l,1l] <- U[3,2] <- U[5,3] <- U[7,4] <- U[8,5] -1
U[2,1] <- U[4,2] <- U[6,3] <- U[9,4] <- U[9,5] - -1
d <- c(rep(c(0, -1.2), 3), 0, O, -1)
startv <- ¢(0.2, 0.3, 0.4, 0.2, 0.2)

# Nelder-Mead as inner optimisation method: : AP
. ) . Python: scipy.optimize.minimize
res <- constrOptim(startv, f=g, grad=NULL, ui=U, ci=d, Julia: optimize! in JuMP, using Ipopt
control=list (fnscale=-1)) Matlab: fmincon
round (res$par, 3)

* Result: 0.000 0.597 1.200 0.331 0.333

 Note: In this case, the solution can also be calculated algebraically (optimal
design theory)
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Linear inequality constraints: barrier method

 Limitations of barrier method (Lange, 2010, page 301):
» Iterations within iterations necessary
» No obvious choice how fast u (¥ should go to 0
« A too small value u® can lead to numerical instability
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Optimisation with a subset constraint

 Optimisation problem with closed and convex subset constraint:
« x p-dimensional vector, g: RP - R continuously differentiable function

L]

« We search x* with g(x*) = max g(x) ° |
« Subject to x € O with Q being a closed and
convex set

* Set of feasible points § = {x € O € RP}

0.5

0.0

-0.5

* Note that in the constrained lasso example, s

1.0 05 0o 05 1.0
Q {[3|

B ”1 = Z?=1| E,,| < t} which is closed and convex 3
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Optimisation with a subset constraint

« Definition: Let Q be a closed and convex
set. The normal cone at x € Q is defined -
as
Nq(x) =
{d e RP|dT(y —x) < Oforally € Q} 4

1.5

1.0

B

» Note: d'z < 0 means that the angle o
between d and z is at least 90 degrees

-1.0

-1.0 0.5 0.0 0.5 1.0 1.5

« Some examples for Ng(x) (x = red dots) B,
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Optimisation with a subset constraint

* Theorem: If x* € Q is a local maximum in the optimisation problem with a
closed and convex subset constraint, then g'(x*) € Ng(x*).

o
=

 Corollary: If g is a concave function and we
consider the optimisation problem with a closed
and convex subset constraint, then: E
x* € Qis alocal maximum & g'(x*) € Ng(x*).

0.0

-0.5

-1.0

-1.0 0.5 0.0 0.5 1.0
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Optimisation with a subset constraint

e Definition: For a closed and convex

set ), we define the Euclidian ©
projection as L
Po(x) = argmin{||z — x|/} -

-1.0 0.5 0.0 0.5 1.0 1.5
B
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Optimisation with a subset constraint

Projected gradient algorithm

e Start with some x(@ € Q.

» For given x*), compute next iteration
x(k+1) ag:

o xk+D) = p (x<k> + akgr(xac))) <

e Until x*) and x** D are close and fulfil o
a stopping criterion

-1.0 0.5 0.0 0.5 1.0 195
* If g is Lipschitz-smooth, one can choose B,

a, = %, otherwise apply back-tracking
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Optimisation with a subset constraint

 The projected gradient algorithm generalizes the steepest ascent/descent
algorithm to handle a subset constraint

* In the projected gradient algorithm, the Euclidian projection is computed,
Po (2 + ayeg' (x))

A requirement for the algorithm is that this computation is feasible and
not a more complicated minimisation problem than optimising g itself ...
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Euclidian projection for lasso

* In the 2d-lasso-case, the Euclidian projection can be .

10

05

0.0

computed in an ad-hoc way

05

-1.0

For lasso in higher dimensions, one can do Euclidian
projection onto the L,;-norm ball (see Condat, 2016;
Duchi et al., 2008; Held et al., 1974) and some R-code
on the course homepage

Condat L (2016). Fast projection onto the simplex and the £1 ball. Mathematical Programming, Series A, 158, 575—585.

Duchi J, Shalev-Shwartz S, Singer Y, Chandra T (2008). Efficient Projections onto the f1-Ball for Learning in High
Dimensions. International Conference on Machine Learning (ICML).

Held M, Wolfe P, Crowder H (1974). Validation of subgradient optimization. Mathematical Programming 6, 62—88.

If only some coordinates, I € {1, ..., p}, are regularised,
Q = {b| Xe/lbi| <t}

« Then, we can apply Euclidian projection onto L;-norm in the smaller space

R/ (for coordinates i € I only), and keep b; for i € I when computing Pq(b)
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Optimisation with a subset constraint

Frank-Wolfe algorithm

e Start with some x(@ € Q.

» For given x¥), compute next iteration x**1 as:

argmin instead of argmax

T
° T(R) = dIrginaXsxen g'(x(k)) X for a minimisation problem
° x(k+1) — x(k) + ak(f(k) — x(k))

« Until x®*) and x**1) are close and fulfil a stopping criterion

 Sublinear convergence is ensured for convex, L-smooth function g and Q
closed bounded convex set when steplength a;, = 2/(k + 2) is used, see
Theorem 7.9 of Wright and Recht (2022).
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Combinatorial constrained optimisation
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RECAlT T3 and Exercise 3.3: R
Maximising information of experimental designs

- Regression model y = X + &, Cov(B) = (XTX)™1- const

« Example: cubic regression, 1 w. w2 w3
1 1 1

2 3

= Bo + Piw; + Bow{ + Bawi + &, X = Lowe wy w;
1 w, w? w

w; can be chosen in [-1, 1], but practical circumstances require here a distance between design

points of 0.05

» Therefore, we allow design points {-1, -0.95, -0.9, ..., 1} ard-atTost e observatiomrcar be-
deorreateachpomt S ={(ny, .., N41),1; € Ny}

- A design can be represented by a vector 1n-§—%0,—1%-—where 0 means that no observation is
done at a design point and 1 means that one observation is made there

 Each observation has a cost; and we want to minimise the perakized D-optimality
—Hebserrations——0=2 — log (det(XTX))

for a given total sample size n
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Constrained optimisation to determine design

- Regression model y = X + &, Cov(B) = (XTX)™1: const

« Example: cubic regression, ,
1 wy wi wj

1 w, w? w
Vi = Bo + Biw; + Bowi + faw) + &, X = 2 2 2

1 w, w2 w3

w; can be chosen in [-1, 1], but practical circumstances require here a distance
between design points of 0.05; hence, we allow design points {-1, -0.95, -0.9, ..., 1}

A design can be represented (coded) in different ways, e.g.,
* by avectorin S ={(n, ..., n41),n; € Ny} with n, being number of observations
made at w;
* by a (sorted) vector (w4, ...,w,) in {—1,—-0.95,-0.9, ..., 1}"
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Constrained optimisation to determine design

- Regression model y = X + &, Cov(B) = (XTX)™1: const
« Example: cubic regression,
1wy, wi w;

2 3
1 wy, wy w,

Vi = Bo + Piw; + Bowi + Bawi + &, X =
1 w, w2 w3

w; can be chosen in [-1, 1], but practical circumstances require here a distance

between design points of 0.05; hence, we allow design points {-1, -0.95, -0.9, ..., 1}

* We use the representation as vectors in § ={(n4, ..., n41),n; € Ny} with n; being
number of observations made at w;

 We have a restricted budget allowing for n observations, i.e. Y;=, n; = n.

« We want to minimise the D-criterion —log (det(X Tx ))
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Constrained optimisation to determine design

* We can easily adjust the simulated annealing algorithm for combinatorial
optimisation to handle the equality constraint Y71, n; = n:

o Start with a design fulfilling the constraint

 Define neighbourhood of a design such that all neighbours fulfil restriction
(proposal distribution has probability 1 on designs with Y71, n; = n)

 An intuitive possibility is to exchange observations:

(2,0,0,4,5,0,0,0,3,1,0, ..., 0, 4) =
(2,1,0,4,4,0,0,0,3,1,0, ..., 0, 4)

 Search randomly a location (here of the 41 w;’s) which has n; > 0 where an
observation is removed and another location where one is added
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Constrained optimisation to determine design

» Start design fulfilling constraint
des <- rep(0, 41)
indices <- 1:41
for (1 in 1:n){
ind <- sample(indices, size=1l)
des[ind] <- des[ind]+1
}

* Determine randomly a neighbour (exchanging points of observation)

irem <- sample(indices[des>0], size=1l)
iadd <- sample(indices, size=l)
desnew <- des

desnew[irem] <- desnew[irem]-1
desnew[iadd] <- desnew[iadd]+1
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Constrained optimisation to determine design

A design can be represented (coded) in different ways, e.g.,
* by avector in § ={(ny, ..., n41), n; € Ny} with n; being number of
observations made at w;
* by a (sorted) vector (wy, ...,w,q) in {—1,-0.95,-0.9, ..., 1}*1
« We can translate a design des coded in the first way to a vector xv of design
points (second way) as follows:

‘W <- Seq (_1 4 1 4 by=0 * 05) Python: xv = np.repeat (w, des)
xv <- rep (W, des) Julia: xv = repeat(w, inner = des)

Matlab: xv = repelem(w, des);

« The design matrix X is then:
* X <- cbind(rep(l, sum(des)), xv, xv*2, xv*3)

Python: X = np.column stack((np.ones_like(xv), xv, xv**2,6 xv**3))
Julia: X = hcat(ones(length(xv)), xv, xv.”*2, xv."3)

Matlab: X [ones (length(xv), 1), xv', (xv').”*2, (xv').”3];
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