

# Advanced computational statistics, lecture 4

Frank Miller, Department of Computer and Information Science, Linköping University April 15, 2025



#### Course schedule

- Topic 1: Gradient based optimisation
- Topic 2: Stochastic gradient based optimisation
- Topic 3: Gradient free optimisation
- Topic 4: **Optimisation with constraints**
- Topic 5: EM algorithm and bootstrap
- Topic 6: Simulation of random variables
- Topic 7: Numerical and Monte Carlo integration; importance sampling

Course homepage: <a href="http://www.adoptdesign.de/frankmillereu/adcompstat2025.html">http://www.adoptdesign.de/frankmillereu/adcompstat2025.html</a>
Includes schedule, reading material, lecture notes, assignments



#### Today's schedule: Optimisation with constraints

- Equality constraints
  - Transformation to an unconstrained problem
  - Modification of iterative algorithm to handle constraints
  - Lagrange multipliers
- Inequality constraints
  - Karush–Kuhn–Tucker approach
  - penalty method
  - barrier method
- Subset constraint
- Combinatorial constrained optimisation



#### Optimisation with equality constraints

- Optimisation problem:
  - x p-dimensional vector,  $g: \mathbb{R}^p \to \mathbb{R}$  function
  - We search  $x^*$  with  $g(x^*) = \max g(x)$
  - Subject to  $h_i(x^*) = 0$ , i = 1, ..., m (equality constraints)





#### Optimisation with equality constraints

- Optimisation problem:
  - x p-dimensional vector,  $g: \mathbb{R}^p \to \mathbb{R}$  function
  - We search  $x^*$  with  $g(x^*) = \max g(x)$
  - Subject to  $h_i(x^*) = 0$ , i = 1, ..., m (equality constraints)
- Approaches:
  - Transformation to an unconstrained problem (problem specific approach)
  - Modification of iterative algorithm to handle constraints (algorithm specific approach)
  - Lagrange multipliers (general approach)
- $\mathbb{S} = \{x \in \mathbb{R}^p | h_i(x) = 0, i = 1, ..., m\}$  called <u>feasible points</u>



# Equality constraints: transformation

- Example: Cubic regression model for fertilizer-yield-relationship with fertilizer  $x \in [0,1.2]$ . Experiment planned with
  - proportion  $w_1$  of observations using  $x_1 = 0$ ,
  - proportion  $w_2$  using  $x_2 = 0.4$ ,
  - proportion  $w_3$  using  $x_3 = 0.8$ ,
  - proportion  $w_4$  using  $x_4 = 1.2$ .
- Note that  $w_1 + w_2 + w_3 + w_4 = 1$ .
- Information matrix M (proportional to inverse of covariance matrix for  $(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2, \hat{\beta}_3)^T$ ):

$$\mathbf{M} = \mathbf{X}^T \operatorname{diag}(w_1, ..., w_4) \mathbf{X} = \sum_{i=1}^4 w_i \mathbf{f}(x_i) \mathbf{f}(x_i)^T \text{ with } \mathbf{f}(x) = (1, x, x^2, x^3)^T$$

• The D-optimal design maximises  $g(\mathbf{w}) = \det(\sum_{i=1}^4 w_i \mathbf{f}(x_i) \mathbf{f}(x_i)^T)$  subject to  $h_1(\mathbf{w}) = 1 - \sum_{i=1}^4 w_i = 0$ 



# Equality constraints: transformation

- The D-optimal design maximises  $g(\mathbf{w}) = \det(\sum_{i=1}^4 w_i \mathbf{f}(x_i) \mathbf{f}(x_i)^T)$  subject to  $h_1(\mathbf{w}) = 1 \sum_{i=1}^4 w_i = 0$
- Transformation:  $1 \sum_{i=1}^{4} w_i = 0 \implies w_4 = 1 w_1 w_2 w_3$  $\tilde{g}(w_1, w_2, w_3) = \det(\sum_{i=1}^{3} w_i f(x_i) f(x_i)^T + (1 - w_1 - w_2 - w_3) f(x_4) f(x_4)^T)$

- The <u>constrained</u> optimisation problem max.  $g(w_1, w_2, w_3, w_4)$  subj. to  $h_1(w_1, w_2, w_3, w_4) = 1 \sum_{i=1}^4 w_i = 0$  is equivalent to the <u>unconstrained</u> optimisation problem maximise  $\tilde{g}(w_1, w_2, w_3)$ .
- Solution with unconstrained optimisation:  $(w_1, w_2, w_3) = (\frac{1}{4}, \frac{1}{4}, \frac{1}{4}), w_4 = 1 \frac{3}{4} = \frac{1}{4}$



Scalar random variables (SPSO2011),

not random vectors (SPSO2007)

## Equality constraints: modification of algorithms

- Constrained optimisation problem:
  - x p-dimensional vector,  $g: \mathbb{R}^p \to \mathbb{R}$  function
  - We search  $x^*$  with  $g(x^*) = \max g(x)$
  - Subject to  $Ax^* b = 0$ ,  $A \in \mathbb{R}^{m \times p}$ ,  $b \in \mathbb{R}^m$  (linear equality constraints)
- Example: Particle Swarm Optimisation (see L3)
- Movement of particle i at iteration t+1:

• 
$$x_i^{(t+1)} = x_i^{(t)} + v_i^{(t+1)}$$

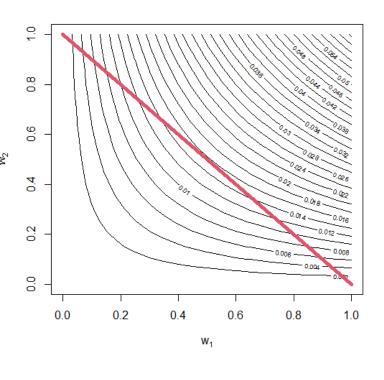
• 
$$v_i^{(t+1)} = wv_i^{(t)} + c_1R_1^{(t+1)} (p_{\text{best},i}^{(t)} - x_i^{(t)}) + c_2R_2^{(t+1)} (g_{\text{best}}^{(t)} - x_i^{(t)})$$

- $R_1^{(t+1)}$  and  $R_2^{(t+1)}$  are uniformly distributed, runif ()
- Ensure that  $Ax_i^{(0)} = b$  and  $Av_i^{(0)} = 0$ , then  $Ax_i^{(t)} = b$  for all i and t



- Example: D-optimal design for quadratic regression without intercept. Experiment planned on  $x \in [0,1]$  with
  - prop.  $w_1$  of observations using  $x_1 = 0.5$ ,
  - prop.  $w_2$  using  $x_2 = 1$ ,
  - $w_1 + w_2 = 1$ .

• 
$$g(\mathbf{w}) = \det(w_1 \begin{pmatrix} \frac{1}{4} & \frac{1}{8} \\ \frac{1}{8} & \frac{1}{16} \end{pmatrix} + w_2 \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix})$$



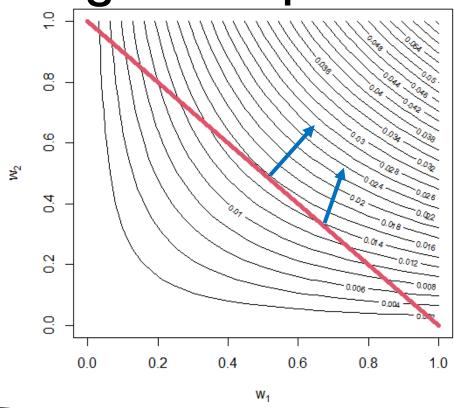
• 
$$h(\mathbf{w}) = 1 - w_1 - w_2$$





Image by cookie studio on Freepik

- Feasible points w(h(w) = 0)
- Direction of steepest ascent, g'(w)

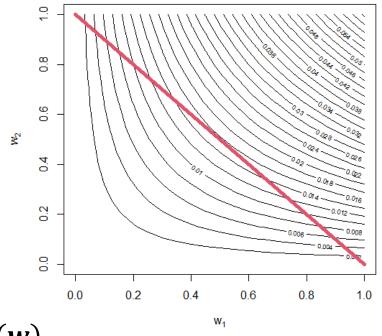


These two are orthogonal at constrained max.; direction orthogonal to feasible points is h'(w)



• 
$$g(\mathbf{w}) = \det(w_1 \begin{pmatrix} \frac{1}{4} & \frac{1}{8} \\ \frac{1}{8} & \frac{1}{16} \end{pmatrix} + w_2 \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix})$$

- $h(\mathbf{w}) = 1 w_1 w_2$
- g'(w) direction of steepest ascent
- $h'(w) = (-1, -1)^T$  (orthogonal to feasible points)



- Condition for constrained maximum:  $g'(w) = \lambda h'(w)$
- $g'(\mathbf{w}) \lambda h'(\mathbf{w}) = 0$
- Define  $\mathcal{L}(w, \lambda) = g(w) \lambda h(w)$  and determine stationary point



- Constrained optimisation problem:
  - x p-dimensional vector,  $g: \mathbb{R}^p \to \mathbb{R}$  function
  - We search  $x^*$  with  $g(x^*) = \max g(x)$
  - Subject to  $h_i(\mathbf{x}^*) = 0$ , i = 1, ..., m (equality constraints)
- Lagrange:

Let  $\mathcal{L}(x, \lambda) = g(x) - \lambda^T h(x)$ ,  $h(x) = (h_1(x), ..., h_m(x))^T$ ,  $\lambda \in \mathbb{R}^m$  and  $g, h_1, ..., h_m$  are continuously differentiable. If g has a local maximum at some point  $x^*$  with  $h(x^*) = \mathbf{0}$  (i.e. in the constrained maximisation problem) and at which the gradients of  $h_1, ..., h_m$  are linearly independent, then there exists a  $\lambda$  such that gradient  $\mathcal{L}'(x^*, \lambda) = \mathbf{0}$  (i.e. stationary point in the unconstrained problem).



- Constrained optimisation problem:
  - x p-dimensional vector,  $g: \mathbb{R}^p \to \mathbb{R}$  function
  - We search  $x^*$  with  $g(x^*) = \max g(x)$
  - Subject to  $h_i(\mathbf{x}^*) = 0$ , i = 1, ..., m (equality constraints)
- Unconstrained problem: Search stationary point  $(x^*, \lambda)$  of  $\mathcal{L}(x, \lambda) = g(x) - \lambda^T h(x)$ .
- Note:
  - $\frac{\partial}{\partial \lambda_i} \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}) = 0$  ensures  $h_i(\mathbf{x}^*) = 0$
  - $\frac{\partial}{\partial x_i} \mathcal{L}(\mathbf{x}^*, \lambda) = 0$  ensures that gradient  $g'(\mathbf{x}^*)$  is orthogonal to the set  $\mathbb{S}$  of feasible points at  $\mathbf{x} = \mathbf{x}^*$



# **Equality constraints: Comparison**

- Recall example about D-optimal design for quadratic regression without intercept; optimal values for  $w_1$  and  $w_2$  are of interest (p = 2, m = 1).
- Transformation method: optimise over  $w_1$   $\dim = p m$ ,
- Modification of algorithm: optimise over  $(w_1, w_2)$   $\dim = p$ ,
- Lagrange multiplier method: search space is  $(w_1, w_2, \lambda)^{\dim p} = p + m$
- If transformation method possible and not too complicated, it has potential to deliver results fastest
- Transformation and modification methods require creativity; Lagrange can be applied generally



# Optimisation with inequality constraints

- Constrained optimisation problem:
  - x p-dimensional vector,  $g: \mathbb{R}^p \to \mathbb{R}$  function
  - We search  $x^*$  with  $g(x^*) = \max g(x)$
  - Subject to  $h_i(x^*) = 0, i = 1, ..., m$
  - and  $q_i(\mathbf{x}^*) \le 0$ , i = 1, ..., n (inequality constraints)
- Set of feasible points  $\mathbb{S} = \{x \in \mathbb{R}^p | h_i(x) = 0, i = 1, ..., m; q_i(x) \le 0, i = 1, ..., n\}$
- An inequality constraint  $q_i(x)$  is called active, if  $q_i(x^*) = 0$
- If it is not active  $(q_i(x^*) < 0)$ ,  $x^*$  is a local optimum of the unconstrained optimisation problem



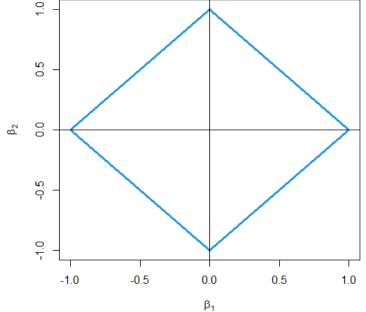
# Inequality constraints - lasso example

• Lasso's objective function to minimise:

$$g(\widehat{\boldsymbol{\beta}}) = \|\boldsymbol{X}\widehat{\boldsymbol{\beta}} - \boldsymbol{y}\|^2 + \lambda \sum_{i=1}^p |\widehat{\beta}_i|$$

• Alternatively, one can solve the constrained problem:

minimise: 
$$g(\widehat{\boldsymbol{\beta}}) = \|\boldsymbol{X}\widehat{\boldsymbol{\beta}} - \boldsymbol{y}\|^2$$
  
subject to  $\|\widehat{\boldsymbol{\beta}}\|_1 = \sum_{i=1}^p |\widehat{\beta}_i| \le t$ 



• For p = 2 and t = 1, the set of feasible points  $\mathbb{S} = \{\widehat{\beta} \in \mathbb{R}^p | \sum_{i=1}^p |\widehat{\beta}_i| \le t\}$  is inside of the blue area



# Optimisation with inequality constraints

- Approaches to handle inequality constraints:
  - Generalisation of Lagrange multipliers (Karush–Kuhn–Tucker approach)
  - penalty method
  - barrier method (also called: interior-point method)



## Inequality constraints: Karush-Kuhn-Tucker appr.

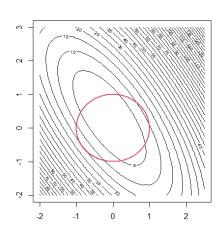
- Constrained optimisation problem:
  - x p-dimensional vector,  $g: \mathbb{R}^p \to \mathbb{R}$  function
  - We search  $x^*$  with  $g(x^*) = \max g(x)$
  - Subject to  $h_i(x^*) = 0, i = 1, ..., m$
  - and  $q_i(\mathbf{x}^*) \le 0$ , i = 1, ..., n (inequality constraints)
- Karush–Kuhn–Tucker (KKT) approach uses generalised Lagrangian  $\mathcal{L}(x, \lambda, \mu) = g(x) \lambda^T h(x) \mu^T q(x)$  with  $h(x) = (h_1(x), ..., h_m(x))^T, \lambda \in \mathbb{R}^m, q(x) = (q_1(x), ..., q_n(x))^T, \mu \in \mathbb{R}^n$
- Instead of above constrained optimisation, search stationary point  $(x^*, \lambda, \mu \ge 0)$  of  $\mathcal{L}(x, \lambda, \mu) = g(x) \lambda^T h(x) \mu^T q(x)$ . For  $x^*$  being a solution of the constrained problem, following condition required: "for all i = 1, ..., n:  $q_i(x^*) = 0$  or  $\mu_i = 0$ "

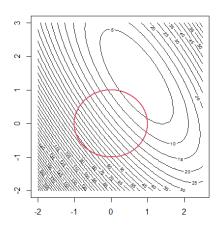


# Inequality constraints: KKT, example

#### • Constrained LS-minimisation:

- x p-dim.,  $g: \mathbb{R}^p \to \mathbb{R}, g(x) = ||Ax b||_2^2 ||x||_2 \le 1$
- $g(x) = \min g(x)$  subject to  $q_1(x) = ||x||_2^2 1 \le 0$  (inequality constraint)
- Generalised Lagrangian (KKT):  $\mathcal{L}(x,\mu) = \left| |Ax b| \right|_2^2 + \mu(\|x\|_2^2 1)$  with  $\mu \ge 0$
- $\frac{\partial}{\partial x}\mathcal{L}(x,\mu) = A^TAx A^Tb + 2\mu x$ ; setting this to 0 gives  $x = (A^TA + 2\mu I)^{-1}A^Tb$
- $\frac{\partial}{\partial \mu} \mathcal{L}(\mathbf{x}, \mu) = 1 \|\mathbf{x}\|_2^2$





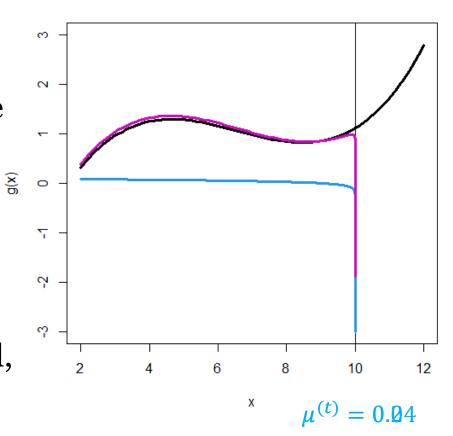
#### Inequality constraints: penalty and barrier methods

- Constrained optimisation problem:
  - x p-dimensional vector,  $g: \mathbb{R}^p \to \mathbb{R}$  function
  - We search  $x^*$  with  $g(x^*) = \max g(x)$
  - Subject to  $q_i(x^*) \le 0$ , i = 1, ..., n (inequality constraints)
- Idea: Modify g to  $\tilde{g}$  such that the algorithm finds only local maxima which fulfil  $q_i(x^*) \leq 0$ , i = 1, ..., n, even if optimisation done unconstrained
- Penalty methods: Set  $\tilde{g} = g$  on  $\mathbb{S} = \{x | q_i(x) \le 0, i = 1, ..., n\}$  and add a (negative) penalty if  $q_i(x) > 0$  for some i
- Barrier methods: Set  $\tilde{g} = -\infty$  if  $q_i(x) > 0$  for some i and g is modified on  $\mathbb{S} = \{x | q_i(x) \le 0, i = 1, ..., n\}$



# Inequality constraints: Barrier method

- Example: maximise g(x) on range  $x \le 10$
- Add barrier function  $\mu^{(t)}b(x)$
- $\tilde{g}(x) = g(x) + \mu^{(t)}b(x)$  should be small close to 10 for x < 10, and  $-\infty$  for x > 10
- Log barrier:  $b(x) = \log(10 x)$
- Solve maximisation for  $\tilde{g}(x)$
- Adapt barrier with smaller  $\mu^{(t)}$
- If  $\mu^{(t)} \to 0$ , local maxima of g can be detected, both at the boundary and in the interior

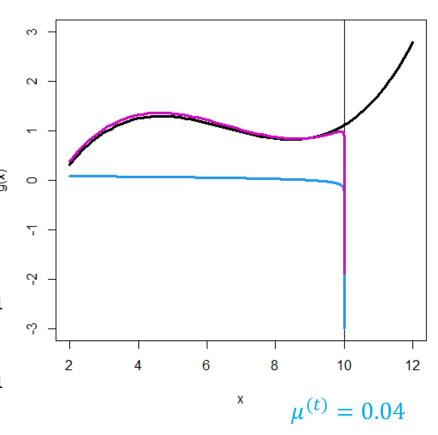


Two 2d-animations: <a href="http://apmonitor.com/me575/index.php/Main/InteriorPointMethod">http://apmonitor.com/me575/index.php/Main/InteriorPointMethod</a>



# Inequality constraints: Barrier method

- Example: maximise g(x) on range  $x \le 10$
- Adapt barrier with smaller  $\mu^{(t)}$
- If  $\mu^{(t)} \to 0$ , local maxima of g can be detected, both at the boundary and in the interior
- Use a sequence  $\mu^{(1)} > \mu^{(2)} > \dots > \mu^{(k)} > \dots$  with  $\mu^{(t)} \to 0$ :
  - Solution for optimisation with  $\mu^{(1)}$  is  $x^{(*1)}$
  - Use  $x^{(*1)}$  as starting value for optimisation with  $\mu^{(2)}$ ; solution is  $x^{(*2)}$
  - Use  $x^{(*2)}$  as starting value for optimisation with  $\mu^{(3)}$ ; solution is  $x^{(*3)}$





#### Linear inequality constraints: R-function constroptim

- Constrained optimisation problem:
  - x p-dimensional vector,  $g: \mathbb{R}^p \to \mathbb{R}$  function
  - We search  $x^*$  with  $g(x^*) = \max g(x)$
  - Subject to  $Ux^* c \ge 0$ ,  $U \in \mathbb{R}^{n \times p}$ ,  $c \in \mathbb{R}^n$  (linear inequality constraints; rows of U are  $u_i^T$ )
- The R-function constrOptim uses log barrier functions
- constrOptim calls repeatedly optim for function  $\tilde{g}$  with barrier; barrier adapted between iterations:  $\mu^{(t)}$  decreases
- E.g:  $\tilde{g}(\mathbf{x}) = g(\mathbf{x}) + \mu^{(t)} \sum_{i=1}^{n} \log(\mathbf{u}_{i}^{T} \mathbf{x} c_{i})$  (for maximisation;  $g(\mathbf{x}) \mu^{(t)}$  ... for minimisation)



#### Linear inequality constraints: barrier method

- Example: Quadratic regression for fertilizer-yield-relationship with fertilizer  $x \in [0,1.2]$ . Experiment planned with
  - proportion  $w_i$  of observations using  $x_i \in [0,1.2]$  (can be chosen by experimenter), i = 1,2,3;  $w_3 = 1 w_1 w_2$ .
- Parameters to be optimised:  $\mathbf{y} = (x_1, x_2, x_3, w_1, w_2)^T$
- D-optimal design maximises  $g(y) = \det(\sum_{i=1}^{3} w_i f(x_i) f(x_i)^T)$  subject to  $x_i \ge 0, 1.2 x_i \ge 0, i = 1,2,3, w_1 \ge 0, w_2 \ge 0, 1 w_1 w_2 \ge 0$
- Construct *U* and *c* such that constraints can be written as  $Uy c \ge 0$



## Linear inequality constraints: barrier method

- $\mathbf{y} = (x_1, x_2, x_3, w_1, w_2)^T, w_3 = 1 w_1 w_2$
- D-optimal design maximises  $g(y) = \det(\sum_{i=1}^{3} w_i f(x_i) f(x_i)^T)$  subject to  $x_i \ge 0, 1.2 x_i \ge 0, i = 1,2,3, w_1 \ge 0, w_2 \ge 0, 1 w_1 w_2 \ge 0$
- $Uy c \ge 0$  with

$$\boldsymbol{U} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & -1 & -1 \end{pmatrix}, \boldsymbol{c} = \begin{pmatrix} 0 \\ -1.2 \\ 0 \\ -1.2 \\ 0 \\ 0 \\ 0 \\ -1.2 \end{pmatrix}$$



#### Linear inequality constraints: R-function constroptim

• R-code:

```
• U <- matrix(0, nrow=9, ncol=5)
 U[1,1] \leftarrow U[3,2] \leftarrow U[5,3] \leftarrow U[7,4] \leftarrow U[8,5] \leftarrow 1
 U[2,1] \leftarrow U[4,2] \leftarrow U[6,3] \leftarrow U[9,4] \leftarrow U[9,5] \leftarrow -1
           \leftarrow c(rep(c(0, -1.2), 3), 0, 0, -1)
  startv \leftarrow c(0.2, 0.3, 0.4, 0.2, 0.2)
  # Nelder-Mead as inner optimisation method:
           <- constrOptim(startv, f=g, grad=NULL, ui=U, ci=d,</pre>
  res
                              control=list(fnscale=-1))
```

Python: scipy.optimize.minimize Julia: optimize! in JuMP, using Ipopt Matlab: fmincon

round(res\$par, 3)

- Result: 0.000 0.597 1.200 0.331 0.333
- Note: In this case, the solution can also be calculated algebraically (optimal design theory)

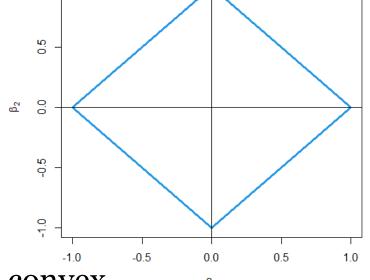


#### Linear inequality constraints: barrier method

- Limitations of barrier method (Lange, 2010, page 301):
  - Iterations within iterations necessary
  - No obvious choice how fast  $\mu^{(t)}$  should go to 0
  - A too small value  $\mu^{(t)}$  can lead to numerical instability



- Optimisation problem with closed and convex subset constraint:
  - x p-dimensional vector,  $g: \mathbb{R}^p \to \mathbb{R}$  continuously differentiable function
  - We search  $x^*$  with  $g(x^*) = \max g(x)$
  - Subject to  $x \in \Omega$  with  $\Omega$  being a closed and convex set
- Set of feasible points  $\mathbb{S} = \{x \in \Omega \subseteq \mathbb{R}^p\}$



Note that in the constrained lasso example,

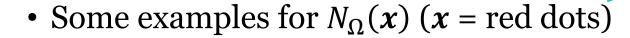
$$\Omega = \left\{ \hat{\beta} \left| \|\widehat{\beta}\|_{1} = \sum_{i=1}^{p} |\widehat{\beta}_{i}| \le t \right\} \text{ which is closed and convex} \right\}$$

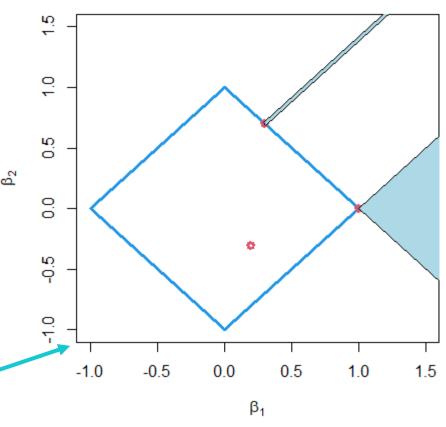


• Definition: Let  $\Omega$  be a closed and convex set. The normal cone at  $\mathbf{x} \in \Omega$  is defined as

$$N_{\Omega}(\mathbf{x}) = \{ \mathbf{d} \in \mathbb{R}^p | \mathbf{d}^{\mathrm{T}}(\mathbf{y} - \mathbf{x}) \le 0 \text{ for all } \mathbf{y} \in \Omega \}$$

• Note:  $d^T z \le 0$  means that the angle between d and z is at least 90 degrees

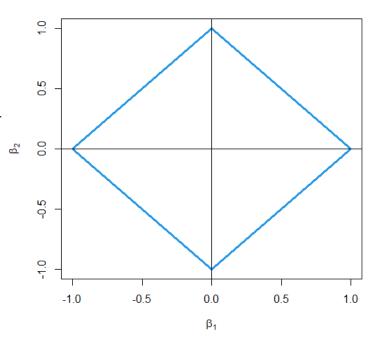






• Theorem: If  $x^* \in \Omega$  is a local maximum in the optimisation problem with a closed and convex subset constraint, then  $g'(x^*) \in N_{\Omega}(x^*)$ .

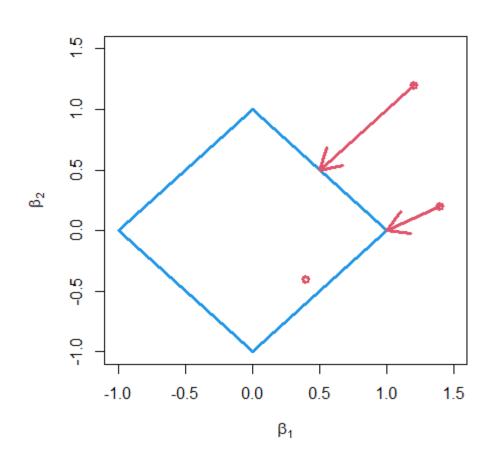
• Corollary: If g is a concave function and we consider the optimisation problem with a closed and convex subset constraint, then:  $x^* \in \Omega$  is a local maximum  $\Leftrightarrow g'(x^*) \in N_{\Omega}(x^*)$ .





• Definition: For a closed and convex set  $\Omega$ , we define the Euclidian projection as

$$P_{\Omega}(\boldsymbol{x}) = \arg\min_{\mathbf{z} \in \Omega} \{ \|\boldsymbol{z} - \boldsymbol{x}\| \}$$



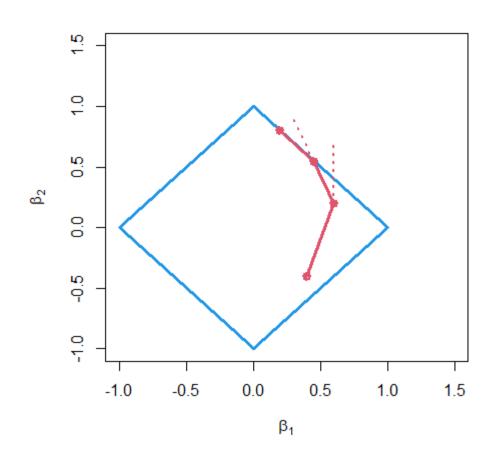


#### Projected gradient algorithm

- Start with some  $x^{(0)} \in \Omega$ .
- For given  $x^{(k)}$ , compute next iteration  $x^{(k+1)}$  as:

• 
$$\mathbf{x}^{(k+1)} = P_{\Omega} \left( \mathbf{x}^{(k)} + \alpha_k g'(\mathbf{x}^{(k)}) \right)$$

- Until  $x^{(k)}$  and  $x^{(k+1)}$  are close and fulfil a stopping criterion
- If g is Lipschitz-smooth, one can choose  $\alpha_k = \frac{1}{L}$ , otherwise apply back-tracking





- The projected gradient algorithm generalizes the steepest ascent/descent algorithm to handle a subset constraint
- In the projected gradient algorithm, the Euclidian projection is computed,  $P_{\Omega}\left(\pmb{x}^{(k)}+\alpha_k g'(\pmb{x}^{(k)})\right)$
- A requirement for the algorithm is that this computation is feasible and not a more complicated minimisation problem than optimising *g* itself ...

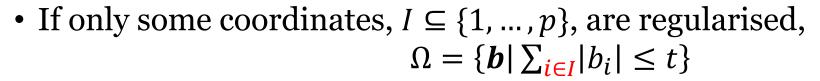


# Euclidian projection for lasso

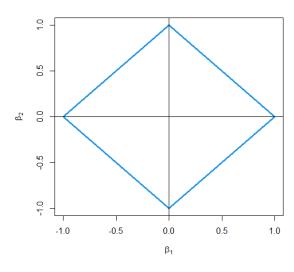
- In the 2d-lasso-case, the Euclidian projection can be computed in an ad-hoc way
- For lasso in higher dimensions, one can do Euclidian projection onto the  $L_1$ -norm ball (see Condat, 2016; Duchi et al., 2008; Held et al., 1974) and some R-code on the course homepage

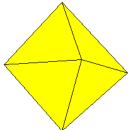
Condat L (2016). Fast projection onto the simplex and the \$\ell\$1 ball. Mathematical Programming, Series A, 158, 575–585. Duchi J, Shalev-Shwartz S, Singer Y, Chandra T (2008). Efficient Projections onto the \$\ell\$1-Ball for Learning in High Dimensions. International Conference on Machine Learning (ICML).

Held M, Wolfe P, Crowder H (1974). Validation of subgradient optimization. Mathematical Programming 6, 62–88.











#### Frank-Wolfe algorithm

- Start with some  $x^{(0)} \in \Omega$ .
- For given  $x^{(k)}$ , compute next iteration  $x^{(k+1)}$  as:
  - $\overline{\boldsymbol{x}}^{(k)} = \operatorname{argmax}_{\overline{\boldsymbol{x}} \in \Omega} \boldsymbol{g}' (\boldsymbol{x}^{(k)})^T \overline{\boldsymbol{x}}$

argmin instead of argmax for a minimisation problem

- $x^{(k+1)} = x^{(k)} + \alpha_k (\overline{x}^{(k)} x^{(k)})$
- Until  $x^{(k)}$  and  $x^{(k+1)}$  are close and fulfil a stopping criterion
- Sublinear convergence is ensured for convex, L-smooth function g and  $\Omega$  closed bounded convex set when steplength  $\alpha_k = 2/(k+2)$  is used, see Theorem 7.9 of Wright and Recht (2022).



## Combinatorial constrained optimisation



# Recall L3 and Exercise 3.3: Maximising information of experimental designs

- Regression model  $y = X\beta + \varepsilon$ ,  $Cov(\widehat{\beta}) = (X^TX)^{-1} \cdot const$
- Example: cubic regression,  $y_i = \beta_0 + \beta_1 w_i + \beta_2 w_i^2 + \beta_3 w_i^3 + \varepsilon_i, \quad X = \begin{pmatrix} 1 & w_1 & w_1^2 & w_1^3 \\ 1 & w_2 & w_2^2 & w_2^3 \\ \dots & \dots & \dots \\ 1 & w_2 & w_2^2 & w_2^3 \end{pmatrix}$

 $w_i$  can be chosen in [-1, 1], but practical circumstances require here a distance between design points of 0.05

- Therefore, we allow design points {-1, -0.95, -0.9, ..., 1} and at most one observation can be done at each point  $\mathbb{S} = \{(n_1, ..., n_{41}), n_i \in \mathbb{N}_0\}$
- A design can be represented by a vector in  $S = \{0, 1\}^{41}$  where 0 means that no observation is done at a design point and 1 means that one observation is made there
- Each observation has a cost; and we want to minimise the penalized D-optimality #observations \*  $0.2 - \log(\det(X^TX))$

for a given total sample size n



- Regression model  $y = X\beta + \varepsilon$ ,  $Cov(\widehat{\beta}) = (X^TX)^{-1} \cdot const$
- Example: cubic regression,

$$y_{i} = \beta_{0} + \beta_{1}w_{i} + \beta_{2}w_{i}^{2} + \beta_{3}w_{i}^{3} + \varepsilon_{i}, \quad \mathbf{X} = \begin{pmatrix} 1 & w_{1} & w_{1}^{2} & w_{1}^{3} \\ 1 & w_{2} & w_{2}^{2} & w_{2}^{3} \\ \dots & \dots & \dots & \dots \\ 1 & w_{n} & w_{n}^{2} & w_{n}^{3} \end{pmatrix}$$

 $w_i$  can be chosen in [-1, 1], but practical circumstances require here a distance between design points of 0.05; hence, we allow design points {-1, -0.95, -0.9, ..., 1}

- A design can be represented (coded) in different ways, e.g.,
  - by a vector in  $\mathbb{S} = \{(n_1, ..., n_{41}), n_i \in \mathbb{N}_0\}$  with  $n_1$  being number of observations made at  $w_i$
  - by a (sorted) vector  $(w_1, ..., w_n)$  in  $\{-1, -0.95, -0.9, ..., 1\}^n$



- Regression model  $y = X\beta + \varepsilon$ ,  $Cov(\widehat{\beta}) = (X^TX)^{-1} \cdot const$
- Example: cubic regression,

$$y_{i} = \beta_{0} + \beta_{1}w_{i} + \beta_{2}w_{i}^{2} + \beta_{3}w_{i}^{3} + \varepsilon_{i}, \quad \mathbf{X} = \begin{pmatrix} 1 & w_{1} & w_{1}^{2} & w_{1}^{3} \\ 1 & w_{2} & w_{2}^{2} & w_{2}^{3} \\ \dots & \dots & \dots & \dots \\ 1 & w_{n} & w_{n}^{2} & w_{n}^{3} \end{pmatrix}$$

 $w_i$  can be chosen in [-1, 1], but practical circumstances require here a distance between design points of 0.05; hence, we allow design points {-1, -0.95, -0.9, ..., 1}

- We use the representation as vectors in  $\mathbb{S} = \{(n_1, ..., n_{41}), n_i \in \mathbb{N}_0\}$  with  $n_1$  being number of observations made at  $w_i$
- We have a restricted budget allowing for *n* observations, i.e.  $\sum_{i=1}^{41} n_i = n$ .
- We want to minimise the D-criterion  $-\log\left(\det(X^TX)\right)$



- We can easily adjust the simulated annealing algorithm for combinatorial optimisation to handle the equality constraint  $\sum_{i=1}^{41} n_i = n$ :
  - Start with a design fulfilling the constraint
  - Define neighbourhood of a design such that all neighbours fulfil restriction (proposal distribution has probability 1 on designs with  $\sum_{i=1}^{41} n_i = n$ )
  - An intuitive possibility is to **exchange** observations:

$$(2, 0, 0, 4, 5, 0, 0, 0, 3, 1, 0, ..., 0, 4) \rightarrow$$
  
 $(2, 1, 0, 4, 4, 0, 0, 0, 3, 1, 0, ..., 0, 4)$ 

• Search randomly a location (here of the 41  $w_i$ 's) which has  $n_i > 0$  where an observation is removed and another location where one is added



• Start design fulfilling constraint des < - rep(0, 41)indices <-1:41for (i in 1:n) { ind <- sample(indices, size=1)</pre> des[ind] <- des[ind]+1 • Determine randomly a neighbour (exchanging points of observation) <- sample(indices[des>0], size=1) irem <- sample(indices, size=1) iadd desnew <- des desnew[irem] <- desnew[irem]-1</pre> desnew[iadd] <- desnew[iadd]+1</pre>



- A design can be represented (coded) in different ways, e.g.,
  - by a vector in  $\mathbb{S} = \{(n_1, ..., n_{41}), n_i \in \mathbb{N}_0\}$  with  $n_1$  being number of observations made at  $w_i$
  - by a (sorted) vector  $(w_1, ..., w_{41})$  in  $\{-1, -0.95, -0.9, ..., 1\}^{41}$
- We can translate a design **des** coded in the first way to a vector **xv** of design points (second way) as follows:

```
• w <- seq(-1, 1, by=0.05)

xv <- rep(w, des)

Python: xv = np.repeat(w, des)

Julia: xv = repeat(w, inner = des)

Matlab: xv = repelem(w, des);
```

- The design matrix **X** is then:
  - X <- cbind(rep(1, sum(des)), xv, xv^2, xv^3)

```
Python: X = np.column_stack((np.ones_like(xv), xv, xv**2, xv**3))
Julia: X = hcat(ones(length(xv)), xv, xv.^2, xv.^3)
Matlab: X = [ones(length(xv), 1), xv', (xv').^2, (xv').^3];
```

