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Course schedule

Topic 1: Gradient based optimisation

Topic 2: Stochastic gradient based optimisation

Topic 3: Gradient free optimisation

Topic 4: Optimisation with constraints

Topic 5: EM algorithm and bootstrap

Topic 6: Simulation of random variables

Topic 7: Numerical and Monte Carlo integration; importance sampling

Course homepage: http://www.adoptdesign.de/frankmillereu/adcompstat2025.html

Includes schedule, reading material, lecture notes, assignments
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EM algorithm
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EM algorithm

« EM = “Expectation-Maximization”
« Main application of this algorithm is in situations where not all data is
observed

 E: Expectation will be taken over all (unobserved) data which lead to the
observed data

« Algorithm is iterative:
each iteration has an E step, followed by an M step
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EM algorithm: Example 1

* Classical example: Genotype—phenotype
« Peppered moths (see Ex.4.2 in GH, “bjorkmatare”)

Carbonaria

Source: Wikipedia; Pictures of moths taken by Olaf Leillinger. Licence: CC BB-SA 3.0

Alleles: C, I, T; genotypes: CC,CI,CT; ILIT; TT

Observed only phenotype: carbonaria; insularia; typica
Frequency observed: Nes n; Ny

« Aim: estimate allele frequencies p., p,, p; based on observed phenotype frequencies
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EM algorithm: Example 1

* Observed data: X = (N, N;, Np)
° Complete data: Y = (NCC' NCI'NCT' NII' NIT' NTT)
« Aim: estimatep = (p.,p,, pr)

« We can specify
* the expectations E[Y|X, p] and
* the complete data likelihood f,(y|p)

2025-04-29
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EM algorithm: Example 1

 According to biological theory:
P(arandom moth is CC) = (p,)?
P(arandom moth is CI) = 2p. p,

« The complete data likeiihood fy(¥|p) is multinomial:

N
FrIp) = GRNee « peppNer s x (')
CC CI

« Complete data log likelihood:
log fy(y|p) = N¢c = log(pé) + Ng; * log(2pcp;) + ++

- Expectations E[Y|X, p] are for example:

2
Pc
E[N¢c|N¢, Ny, Np, p] = N¢
pé + 2pcpr + 2pcpr
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EM algorithm

 Let X be observed data, ¥ complete data, & unknown parameter-vector,
L(0]|x) likelihood to be maximized

e Tterationt (t = 0,1,...):
» Let Q(0]x; 8Y) = E{log L(8|Y)|x; 8V} be expectation of log likelihood
for complete data conditional on observed data X = x
« EM algorithm:
1. Initialize parameter-vector with a guess 8%, t = 0
. E step: Compute Q(8|x; 9V)
. M step: Maximize Q(8|x; 8(9)) with respect to 8 -> result is §(¢+1

If not stopping criterion (e.g. (8¢+ — H(t))T(G(”l) —0W) < €) met,
set t <- t+1, and go back to E step

DowW N
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EM algorithm: Example 2

« Effect of a drug to be measured and n patients (randomly chosen out of a
population of patients) treated with the drug

« X,,i =1,...,n, observed for each patient after drug-treatment
« Known that population consists of two groups:

 One group responds well to the drug (i.e. larger X,)
 Another group responds only barely (smaller X,)

» It is not known which patient belongs to which group
Observed: X,
Unobserved: Z; = {

1, if patient i belongs to responder group
0, otherwise

Complete data: Y; = (X;,Z))
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EM algorithm: Example 2

* In this example, we assume that X; has normal mixture density f for ¢ = 2
groups (responder, non-responder)

* Generally, a normal mixture (also called GMM, Gaussian mixture model)
has density f being sum of ¢ weighted densities:
fx) = Xiz10i (% wi; 0y),
where p. are weight or mixing coefficients (p, = 0; p, + -+ p. = 1), and
@ (x; u; o) being density of N(u, %)

* Here for ¢ = 2 groups (p = p1, p,=1 —p):
f(x) =pp(x; puy;00) + (1 —po(x; py; 03)
5 parameters to estimate from data: p; uy; g;; Us; 0y
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EM algorithm: Example 2

* fu(x) =po(x; ui;01) + (1 —p)o(x; uy; 03)
* parameters: p; Uq; oq; Uy; 0y

density

000 010 020 020

Y —
-
o
]
[ -
a -
A
[ s -

« Example here: p =0.4; u; = 0;0, = 0.7; u, = 2; 0, = 0.8
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EM algorithm for normal mixtures

» The estimated probability that observation j belongs to

group 1 (of c groups) is

density

E step T = ﬁigo(xj;ﬁi; 6i)
N D=1 ﬁkfp(xjiﬁki 6-k),

000 010 020 030>

where I
@ (+; u; o) is density of normaldist. with mean ¢ and sd ¢ x
* Model parameters maximizing Q are:

1gn

M Steppl = —2j=1Tj, Multivariate case similar, except:
1 ~ 1
pl n
~2 1 2 2 _ 1 A ~ ~ T
6f = — X1+ (xj —iy) P == ;- (x5 =) (xj—H;)
pin pin =

=1 Z =1 T[l] {1Og(pl) + log (p(x]; Ui, Ul)}
. See Sectlon (10.1 and) 10.2 of Lindholm, Wahlstrom, Lindsten, Schon (2022)
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EM algorithm for normal mixtures

- Example for illustration: n = 9 observations obtained. Ordered data:

0.1, 0.5, 0.7, 1.1, 2.5, 3.4, 3.5, 3.9, 4.0
« EM algorithm terminates after 8 iterations with:
@& 1w 6® 68y = (0.444,0.600,3.460,0.361, 0.532)

« Mean, sd, and 7, ; converge as follows:

Estimated mean Estimated standard deviation Estimated group membership

1.0

~ -

08

o -

06

o

P{Xj belongs to group 1)
04

(]
5
0z

0o 02 04 06 08 10 12 14
(]
=l
N

0.0
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EM algorithm for normal mixtures

- Example for illustration: n = 9 observations obtained. Ordered data:
0.1, 0.5, 0.7, 1.1, 2.5, 3.4, 3.5, 3.9, 4.0

« EM algorithm terminates after 8 iterations with:
@®, 1® u® +® ®y = (0.444,0.600,3.460,0.361, 0.532)

 Over the iterations, Q converges as follows:

Likelihood Q

Q
= - -20.69286
-19.68185
I - -17.56861
-14.35840
_ -13.19032
-12.03445
o -11.71313
-11.71272

o
—

o 5

lteration
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emalg <- function(dat, eps=0.000001) {

n <- length(dat)
pi <- rep(NA, n) #initialize vector for prob. to belong to group 1
P <- 0.5 #Starting value for mixing parameter
sigmal <- sd(dat)*2/3 #Starting value for variances
sigma2 <- sigmal
mul <- mean(dat)-sigmal/2 #Starting values for means
mu2 <- mean (dat)+sigmal/2
PV <- c(p, mul, mu2, sigmal, sigma2) #parameter vector
cc <- eps + 100 #initialize conv. crit. not to stop directly
while (cc>eps) {
pvl <- pv #Save previous parameter vector
### E step #i##
for (j in 1:n) {
pil <- p*dnorm(dat[j], mean=mul, sd=sigmal)
pi2 <- (1-p)*dnorm(dat[j], mean=mu2, sd=sigma2)
pil[j] <- pil/ (pil+pi2)
}
### M step #i#t#
P <- mean (pi)
mul <- sum(pi*dat)/ (p*n)
mu2 <- sum((1l-pi)*dat)/((1l-p) *n)
sigmal <- sqgrt(sum(pi* (dat-mul) * (dat-mul)/ (p*n)))
sigma2 <- sqgrt(sum((l-pi)* (dat-mu2)* (dat-mu2)/((1-p)*n)))
#HH#H#
PV <- c(p, mul, mu2, sigmal, sigma2)
cc <- t(pv-pvl) %$*% (pv-pvl)
}
PV

}

data <- ¢(0.1, 0.5, 0.7, 1.1, 2.5, 3.4, 3.5, 3.9, 4.0)

2025-04-29
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Choice of starting values in example before

e We want to create automatically starting values
which are meaningful for the data ‘ L
e My heuristic rule to choose them in the R-code i
before:
— Take total data and compute overall mean and sd

— Overall sd is usually larger than sd’s for groups

— Therefore, I took 2/3* overall sd for the sd in
both groups

— For group means, starting values with 1 sd
difference chosen
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EM algorithm: Example 3

e We consider now an unsupervised learning situation with multivariate
data coming from c groups, but it is unknown from which group each
observation comes from (i.e., we have unlabeled data)

e Task: estimate to which group the observations belong to (i.e.,
classification)
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Excursus: k-means clustering algorithm

0.9 ¢
e Initialize with k means R
0.8 T +f&
(0) (0) + Pt
”1 ) ) ) ”k N ﬁ-‘l‘l-_h'_ﬂ—-’-
0.7 4 AT it
. ++it
e Assignment step: s
. . . b
Each observation is assigned to the &1 N
() .
nearest mean y, 0.5 4 + .
e Update step: ol S
For each group i calculate the new mean M
(t) 03t
K,
e Iterate until groups do no longer change  °°|
Iteration #0
0.1

0 01 02 03 04 05 06 07 08 09 1
Annimation by: Chire
https://commons.wikimedia.org/wiki/File:K-means_ convergence.gif
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Excursus: k-means clustering algorithm

e The k-means algorithm creates clusters of similar size
e Sometimes more flexibility about cluster size desired

Different cluster analysis results on "mouse" data set:

Original Data k-Means Clustering EM Clustering
0.9 0.9 o 0.9 N
N - TR
% s (JU: -
0.7 +?|_‘|"?"‘ %0 Fr::%gjﬁtgo%:;” igpf" 0.7
+ n 0@ "~ QD%@CJ'W& X
0.6 0 Sy
. B oo T 08 o ° g 0.6
g8 B @g’df Cﬁ*‘%‘.\
0.5 » el = o 0.5
: oo ® % ’
r?cé‘i‘) 6009; %O%O
0.4 p 2 oc@ 0.4
fo o F a_o
SQ Q@ C.‘,S)% ‘%08
0.3 A Do 0.3
0.2 0.2 0.2

0.1 0.1 0.1
0 0102 03 0405 06 07 08 09 1 0 01 02 03 0.4 05 06 0.7 0.8 09 1 0 01 02 03 04 05 06 0.7 0.8 09 1
Figure by: Chire
https://upload.wikimedia.org/wikipedia/commons/0/09/ClusterAnalysis_ Mouse.svg

e ASSuming a mu ariate normal mixture enables using the EM algorithm
LINKOPING
UNIVERSITY
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Choosing starting values, connection to k-means

e We can look at the data and guess the components in the mixture, their mean and
variance

e We can use a heuristic rule to determine starting values (like in Example 2)
e We can try a grid of starting parameter values

e Specifically, for the EM algorithm for normal mixtures, we can first run a classification
algorithm and use its result as start for the EM algorithm

e Note (cp. Sec. 10.2 of Lindholm, Wahlstrom, Lindsten, Schon, 2022):
The k-means algorithm can be seen as special case of the EM algorithm for normal
mixtures when the variances tend to 0
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Convergence criterion for iterative methods

 Compare 09 and 8(**V) and stop if they are “close enough”

p(t+1) _ e(t)” < e, gﬁ icllapted

 Absolut stopping criterion,

- Relative stopping criterion, |[§¢+D — 9W||/||0¢+V|| < ¢,
|9(t+1)_9(t)||
> [l +e

 Different norms ||-|| can be used
« Instead of (Y and 8(** V), one can compare g(0®) and g(8¢+D)

(but note: not all iterative methods require the calculation of g(8®)) and
then, it would add computational time)

« Modified rel. stopping crit. <E€

« EM: g(8®) = Q(6®|x; 6¢~1); therefore, a reasonable stopping criterion is
(8% V|x; 01V) — Q(0P|x; 81V |<e
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Bootstrap
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Why bootstrap?

« Assume you have independent samples of some population

 In statistics, we have methods to construct confidence intervals (CIs) for a
parameter 6 of interest (e.g., mean) based on distributional assumptions;
e.g., explicit formulas exist in case of normal distribution

« Sometimes not reasonable to make distributional assumptions

« Aim here: obtain CIs without these distributional assumption

« We take the available sample as assumption for distribution of
population and resample from it

« We pull ourselves up by our own capabilities — E

like “pulling us up from the mud by our own bootstraps”

LINKOPING
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Bootstrap method

* Observed data: D = (X4, ..., X},,)

- Of interest: An estimator T(D) = 6 for some parameter 6 and its uncertainty
(e.g., Cl for 0)

* Draw B resamples D;" = (X7, ..., X;;) of size n from original data D with

replacement
B =500 or 1000 has been used historically; B = 10000 is nowadays often no problem

» Usually, there are repetitions in a resample

» Calculate the property of interest for each resample: §; = T(D;),i =1, ..., B

 The distribution of these B values ("bootstrap distribution™) gives

information about distribution of T'(D)
« E.g.,aCI for 6 can be computed

LINKOPING
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Example: precipitation data Crl

[
 Rainfall data from July in 233 years in Stockholm 1

i What iS the mean and a 95%_CI for the mean? Precipitation in Stockholm, July, 1786-2018

« A standard formulae for the CI assumes that data is
normally distributed and uses therefore the t-
distribution:

X =62.6 mm,s = 35.0,n = 233,

sy = s/\n = 2.29,
to.025233 = 1.970

* 95%-CI-bounds: X + sz - t( 25 233; here: (58.1,67.1)

 But data here is not normally distributed ——
Data source: SMHI

60

50

40

30

20

10

R e S

0

« Now, we construct a CI using the bootstrap method
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Example: precipitation data

» We illustrate the bootstrap using

only the last 6 years: 42.3, 44.1, 91.9, 47.6, 14.6, 5.9
e First resample: 5.9, 42.3, 5.9, 47.6, 91.9, 91.9
 Second resample: 42.3, 44.1, 42.3, 91.9, 42.3, 14.6
 Third resample: 47.6, 44.1, 42.3, 14.6, 91.9, 14.6
.

+ B-th resample: 47.6, 42.3, 91.9, 91.9, 5.9, 42.3

* The mean of each resample: 47.6, 46.3, 42.5, ..., 53.7
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Example: precipitation data

« From the complete data, we made B = 1000
resamples; the 1000 means of those are in the
histogram

 The mean of the means: 62.6 mm

(bootstrap estimate is here the same as the usual estimate of the mean x)

* The middle 95% of the means are from 58.2 to 66.7
— this is our 95%-bootstrap-CI for the mean

This is: limits are the 2.5% and 97.5% percentiles

 This way to define the CI is called percentile
method

Density

0.20

0.15

0.10

0.05

0.00

2025-04-29
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Bootstrap in R

R code using a loop for bootstrap replicates:

bo <- 1000 # bootstrap replicates

bs <- c() # to save the results for the means

for (1 in 1:bo) {
X <- sample(mrain, size=length(mrain), replace=TRUE)
bs <- c(bs, mean (x))

}

hist (bs)

bss <- sort (bs)

ci95 <- c(bss[round(bo*0.025)], bss[round(bo*0.975)])

ci95

A run of this code gave (58.2, 66.7) as 95% bootstrap confidence interval

28
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Bootstrap in R with package boot

* As alternative, package boot with functions boot and boot.ci can be used
library (boot)

 Define first function of interest, e.g. the mean:
bootmean <- function(x, 1) mean(x[1])

» Generate B bootstrap resamples with function boot:
bss <- boot (mrain, bootmean, R=1000)

* You can plot a histogram of the bootstrap distribution:
hist (bss$St)

* A 95%-CI is between 2.5%- and 97.5%-percentile of bootstrap distribution:
boot.c1i (bss, type="perc”)
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Parametric bootstrap

 When a parametric model for the data is known or
believed to represent the reality well, we can do
parametric bootstrap and sample according to the
assumed model

« Example: We assume that monthly precipitation in July

follows a Gamma(3, 20)-distribution

« We sample 233 datapoints from Gamma(3, 20) and
calculate parameter of interest

Do this B times and derive e.g. a confidence interval

2025-04-29 30

Gamma(3, 20)-sample
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Example: precipitation data

« What is an estimated probability for “less than 10 mm rain in next July”?
How good is our estimation? (= CI)

« Reasonable to calculate proportion of years with July-rain < 10 mm.
Here: in 10 of 233 years = 0.043

Histogram of bsdry$t

 To calculate a 95%-CI, we generate a bootstrap distribution

(We resample B times and compute for each resample the proportion of years with July-rain < 10 mm)

20000
J

15000
I

« We use it’s 2.5%- and 97.5%-percentile: |
(0.0172, 0.0687)

Frequency
10000
l

5000

 Conclusion: The probability for < 10 mm rain in July is

between 1.7% and 6.9%; estimate is 4.3% N Jﬁ

[ T T T T 1
0.00 0.02 0.04 0.06 0.08 0.10

* (With normal assumption an estimate would be 6.6%. But a probability for < 0 mm rain would be 3.7%...
To use bootstrap gives here much better estimates than with normal assumption! You get easily a confidence interval as well.) bsdryst
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Bootstrap in R with package boot

 Define function of interest, here proportion below 10 mm:
bootdry <- function(x, 1) mean((x[1]<10))

* Generate B = 100000 bootstrap resamples:
bsdry <- boot (mrain, bootdry, R=100000)

* Plot a histogram of bootstrap distribution:
hist (bsdryS$t)

 Estimate proportion:
bootdry (mrain)

* A 95%-CI is between the 2.5%- and 97.5%-percentile of the bootstrap

distribution:
boot.ci (bsdry, type="perc”)

32
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Bootstrap for regression modelsys

« We can use the bootstrap method very flexibly,
e.g. in linear regression if we want a CI for

the slope or the residual standarddeviation£ 1

- Example: Experiment about the (toxic) influence
of a fertilizer on the growth of garden cress
(yield vs. amount of fertilizer, n = 81)

200
|

om o Eano - 00 o

Yield (mg)
150
|
-

 Estimated linear regression:
yield = 203.3 — 71.3 - fertilizer
with residual standarddeviation 6 = 26.7

100
|

e CI fOI‘ SlOpe? CI fOI' o7 ofo o_lz o_|4 o_le OﬁB 1?0 12

Fertilizer (%)
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Bootstrap for regression models

34

250
l

» The dataset has n = 81 pairs of fertilizer-yield-values

200

 The bootstrap resamples n pairs with replacement,
computes regression-slope and &

Yield (mg)
150
|

100
l

« This is done B times; R-code:

cressdat <- data.frame (fertilizer, yield) 00 02 04 06
cmslope <- function(dat, i) { Fertiizer (%)
cm <- Im(yield~fertilizer, subset=i, data=dat)
coef (cm) [2]
}
cb <- boot (cressdat, cmslope, R=10000)
boot.ci(cb, type="perc")

« Result for CI-limits: -83.8, -59.1

0.8 1.0 1.2
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250
1

Bootstrap for regression models

* A function for analysis of the residual & is:

200
1

Yield (mg)
150
!

100
1

cmressd <- function(dat, i) {
cm <- Im(yield~fertilizer, subset=i, data=dat)

summary (cm) $sigma

}

0.0 02 04 06 08 1.0 12

Fertilizer (%)

Histogram of ch$t

* Result for CI-limits: 22.62, 29.89 (percentile method) -

» Median (50% percentile) of bootstrap distribution: 26.32

=
o

* Residual & of data: 26.72

« Percentile CI is constructed around 26.32 while it should |
be constructed around 26.72 = the CI is biased

200 400 800 800 1000
l
|
[

0
L

cb$t
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Percentile method for Cls and alternatives

 The percentile method can have drawbacks

e Bias: Estimate 0 might be very different from median of bootstrap
distribution, median(8;), but we would like a CI constructed around 6

« The bootstrap distribution might be skewed implying that the se(8)
changes with the true 6

« The BC, method (bias correction — accelerated) improves the percentile
method by

» correcting for bias and
- adjusting the boundary alpha-levels to handle dependence of se(8) on 6

« If bootstrap distribution has not these issues, BC, = percentile
* For other methods (and BC,) see Givens and Hoeting (2013), Chapter 9.3.
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BC, method for bootstrap Cls

» Like percentile method, BC, uses quantiles from the bootstrap distribution, but
instead of /2 and 1 — a/2, it uses the two corrected quantiles

ZotZg /2
D(zy +
( 0 1—a(zoiza/2)

« Bias: Define z, = ®~!(proportion of bootstrap values below estimate)

- Handling of skewness with acceleration factor a:
" ~ N3
Xi=1(00 — 0w)

. ~ \2)3/2
6{211(00) — )}
where é(i) is estimated leaving out observation i and é(.) 1S mean of é(l-)

a =

- This is a jackknife approach for estimating the change of se(d) when 6 changes
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Jackknife

* Observed data: D = (X4, ..., X;;)

» Of interest: An estimator T (D) for some parameter

« nresamples defined as D;" = (X3, ..., X;_1, Xi+1, ---, X;,) (leave-one-out sample)
* T(D7),...,T(D;) give information about distribution of T (D)

« Jackknife variance estimation for T'(D):

1 % 1 *
n(n-1) ?=1(T(DL) _])29Where] Z; ?=1T(Di)

« Important application both for Jackknife and bootstrap is variance estimation

 Jackknife is resampling method like bootstrap, but it is deterministic
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Bagging (bootstrap aggregating]

« In the examples we discussed, we had an estimate 6 and got information
about its uncertainty with the bootstrap approach, e.g., constructing a CI

« In bagging, bootstrap is used to improve the estimate 9 itself by 2 Vi1 0;

« For example, if 8 is based on model-fitting where very different models
could be chosen only if some observations are changed, the bootstrap
estimate is model averaging

« 0 might be based on modelling with neural networks or regression models
with data-dependent feature selection

« See Section 7.1-7.2 of Lindholm, Wahlstrom, Lindsten, Schon (2022)

LINKOPING
II.“ UNIVERSITY



	Start / Välkommen
	Bild 1: Advanced computational statistics, lecture 5 
	Bild 2: Course schedule 
	Bild 3: EM algorithm
	Bild 4: EM algorithm
	Bild 5: EM algorithm: Example 1
	Bild 6: EM algorithm: Example 1
	Bild 7: EM algorithm: Example 1
	Bild 8: EM algorithm
	Bild 9: EM algorithm: Example 2
	Bild 10: EM algorithm: Example 2
	Bild 11: EM algorithm: Example 2
	Bild 12: EM algorithm for normal mixtures
	Bild 13: EM algorithm for normal mixtures
	Bild 14: EM algorithm for normal mixtures
	Bild 15
	Bild 16: Choice of starting values in example before
	Bild 17: EM algorithm: Example 3
	Bild 18: Excursus: k-means clustering algorithm
	Bild 19: Excursus: k-means clustering algorithm
	Bild 20: Choosing starting values, connection to k-means
	Bild 21: Convergence criterion for iterative methods
	Bild 22: Bootstrap
	Bild 23: Why bootstrap?
	Bild 24: Bootstrap method
	Bild 25: Example: precipitation data
	Bild 26: Example: precipitation data
	Bild 27: Example: precipitation data
	Bild 28: Bootstrap in R
	Bild 29: Bootstrap in R with package boot
	Bild 30: Parametric bootstrap
	Bild 31: Example: precipitation data
	Bild 32: Bootstrap in R with package boot
	Bild 33: Bootstrap for regression models
	Bild 34: Bootstrap for regression models
	Bild 35: Bootstrap for regression models
	Bild 36: Percentile method for CIs and alternatives
	Bild 37: BCa method for bootstrap CIs
	Bild 38: Jackknife
	Bild 39: Bagging (bootstrap aggregating)


