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Course schedule

Topic 1: Gradient based optimisation

Topic 2: Stochastic gradient based optimisation

Topic 3: Gradient free optimisation

Topic 4: Optimisation with constraints

Topic 5: EM algorithm and bootstrap

Topic 6: Simulation of random variables

Topic 7: Numerical and Monte Carlo integration; importance sampling

Course homepage: http://www.adoptdesign.de/frankmillereu/adcompstat2025.html

Includes schedule, reading material, lecture notes, assignments
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Today’s schedule

e Numerical integration
« Newton-Cotes rules
» Gaussian quadrature

« Importance sampling

 Antithetic sampling
e Combining importance and antithetic sampling
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Integration in Statistics

co

Expected value: E(X) = J__x - f(x)dx
Variance: Var(X) = ffooo(x — E(X))? f(x)dx
Probabilities for distributions with given density:

y
PX<y)= ff(x)dx

The likelihood function might be an integral, e.g., in mixed effect models like in
the Alzheimer’s example by Givens and Hoeting, ch.5:

22 i
L(B,02|y) = HJ [43(%'; 0,0;) Hj_lf()’ijp\ij)] dy;
i=1 B

where ¢ is normal density and f Poisson density
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Integration in Statistics

 Analytical integration (in rare cases ...)

* Numerical integration (Evaluation of integrant at a finite number of points
and compute weighted sum)

 Using Monte Carlo methods
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One-dimensional numerical integration

« Computation of ff f(x)dx

* Divide first [a, b] into n subintervals [x;, x;,1],i =0,...,n —1(a = x, b = x,);
then ff fO)dx = TP [ f(x)dx

*

* Use a “simple rule” by choosing m + 1 nodes x;; in [x;, x;,1] and approximate
[ fOOdx ~ T Aiif (xi7)
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Newton-Cotes rules

« Computation of f;i“ f(x)dx by X520 Aijf (x{‘ j)

*

» m + 1 equally spaced nodes x;; in [x;, x;41]
e Riemann rule (m = 0): x;, = x;, ;o0 = (xj31 — x;)

— Xi+1~X{

» Trapezoidal rule (m = 1): xj; = x;, X{; = Xj41, Ajo = Ajp = 2t

» Simpson’s rule (m = 2): xj, = x;, ¥ = o8 x1 = x4,
_ _ Xip1—X| AL Xip1—Xj
Ajp = App === A = 4 - =5

« Compare Givens and Hoeting, Figure 5.2

7
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Newton-Cotes rules: Trapezoidal rule

« Computation of ff f(x)dx

» We use equally spaced x;, i.e., x; = ith+a,h = b%a

. b
» Then the trapezoidal rule becomes: [ f(x)dx = Zf(a)+h S5} F(x)+5f (b)

2/ ()45 () R )it (o)
h T
a=xo X: < b=x
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Trapezoidal rule: Example

X standard normal distributed =

Compute P(-15< X <1.5) = go(x)dx with
@ (x) = =e—**/2 using the trapezméal method

n=4: f 15<p(x)dx ~ 221D + 9(—0.75) + 9(0) + ¢(0.75) + ‘P“S))
=—(0 1295/2+0. 3011+o 3989+o 3011+0.1295/2)=0.8481

0.1 02 03 04

Iterative application of the trapezoidal rule:

To obtain in a next step a better approx1mat10n use n = 8, compute additionally
( 1.125), (—0.375), ¢(0.375), ¢(1.125), and (‘P< 15) 4 go( 1.125) + ¢(—0.75) +
-+ @(1.125) + 222

Do this until stopping criterion met

A relative stopping criterion is reasonable here

LINKOPING
II.“ UNIVERSITY



Advanced computational statistics L7

Trapezoidal rule: Example

« With a relative stopping criterion cc =

approximations of the integral:

Integral

Integral—old

nodes integr-ap log 10 (cc)
4 0.8480511
8 0.8618243 -1.7893847 This means that cc = 1071789
16 0.8652468 -2.4010844
32 0.8661010 -3.0055700
64 0.8663144 -3.6082363
128 0.8663678 -4.2104480
256 0.8663812 -4.8125460
512 0.8663845 -5.4146154
1024 0.8663853 -6.0166778
 Using a build-in-function:
pnorm(l1.5) - pnorm(-1.5) = 0.8663856
| R TR

2025-05-16

—1‘ < 107, we obtain following
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Iterative application of trapezoidal rule

(0) (0) O(O) O(O) O(O)
X3 X4

n=8 @& @& @& @& © & @ @
xél) xil) x§1) x?(,l) xil) xél) xél) x§1) xél)

n=16 00 0000000000060 eoe

(2) (2) (2)
X Xq X16

 Faster if one reuses already computed values for next iteration

11
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Gaussian quadrature

« Newton-Cotes rules based on equidistant nodes

« Gaussian quadrature uses idea that it might be better to be more flexible and allow
arbitrary distances between nodes x; and corresponding weights A; to compute

b

[ reoax =" af)

a

 Gaussian quadrature is d%fined for given weight function w(x)

[ Feoweade = " afe

a

— 2 .
 For W(X ) =e *; “GaU.SS-HeI'mlte” (note: Givens and Hoeting use Gauss-Hermite with w(x) = e~**/2)
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Gauss-Hermite quadrature

. A2 .
» Gauss-Hermite quadrature uses w(x) = e™* and can integrate from -« to +.

« E.g. form + 1 = 7 nodes, x; and 4, are in following table:

-2.652 -1.674 -0.816 O 0.816 1.674 2.652
0.001 0.055 0.426 0.810 0.426 0.055 0.001

 Given a function f(x) and f*(x) = f(x)/w(x), we approximate the integral by

] F()dx = j Fr w0 dx ~ Z Af* ()
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Gauss-Hermite quadrature - Example

-2.652 -1.674 -0.816 O 0.816 1.674 2.652
0.001 0.055 0.426 0.810 0.426 0.055 0.001

* fr(x) = f(x)/w(x)f Cf)dx = [C frOw(x)dx = X5 A;f *(x;) with

w(x) =e =

- Example: f(x) = \/iﬁ e~*": Compute numerically integral from -c to +c

with Gauss-Hermite and m = 6 (we know that this should be 1 since this is
the density of normal distribution with variance=1/2)

f f(x)dx = f —W(x)dx ~ —Z oA & \/—_1 772454 ~ 1,000000
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Adaptive quadrature and dimension of integrant

« Adaptive quadrature can introduce more points depending on the local
behavior of f: in regions where the integral approximation is not yet
stable (e.g. since f has a large change), more nodes might be added

» The R-function integrate uses adaptive Gaussian quadrature
 The algorithms discussed work in general well for one-dimensional cases
» For 2d or maybe 3d problems, they might be applied iteratively

 Curse of dimensionality: runtime growing exponentially with dimension

 For higher dimension, Monte Carlo integration often preferable
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Monte Carlo estimator / MC integration

 In L6, we have generated X4, ..., X,, from a target distribution f

« A main use of these random draws is Monte Carlo integration:
Calculate [ f(x)dx or, more general, [ h(x)f (x)dx

A Monte Carlo estimator of [ h(x)f (x)dx is: {/QMC = %Z?zl h(X;) }

o If h(x) = x, we estimate the distribution’s mean with /i, = X
« If h(x) = (x — X)?, we estimate the distribution’s variance

« If h(x) = 1{x > c}, we estimate probability to be > c, e.g., a rejection
probability: [ h(x)f (x)dx = [ f(x)dx = P(X > ¢)
(see t-test simulation example in L6 and following example)
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Example: Monte Carlo integration

« Background: Clinical study with two significance tests

 n, patients treated with high dose of a drug, n, with low dose, n, with placebo;
high dose compared to placebo (Z,) and low dose compared to placebo (Z,)
Test 1: Reject Hy, if Z, > ¢
Test 2: Reject Hy, if Z, > ¢

 Let Z; and Z, be standard normal distributed test statistics
* If c chosen conventionally, ¢ = 1.96 for @ = 0.025, P(Z, > ¢) = 0.025,i = 1,2

* In this context, desired to control FamilyWise Error Rate (FWER)
P(Z, > cor Z, > c) (reject any of the two)

 Z; and Z, are correlated
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Example: Monte Carlo integration

1 ..
« We have Z = (Z) ~N ((8) (p ’i)) (multivariate normal) and want to

determine c suchthat P(Z, >corZ,>c) =«
« Sample from multivariate normal
« Determine Monte Carlo integral estimate for P(Z, > c or Z, > c) for arbitrary c

* Search then c such that P(Z, > c or Z, > c) = a by bisection or sorting
max(Z,Z,) and taking 97.5%-percentile for a = 2.5%

e With h(xy,x3) = 1{x; > corx, > ¢} = 1{max{xy, x;} > ¢} we have

h(x)f(x)dx = Joo jooh(xl,xz)f(xl,xz)dxl dx, = P(Z,>corZ, > c)
R2 —o0 v —00
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Example: Monte Carlo integration

* 10 000 random draws of bivariate _ |
normal with p = 0.5

 For c = 2.21 are 2.5% of draws . _
upper and right to the red lines

[

~ =

« FWER is controlled at ¢ = 2.5%,
if we reject any of Hy; for Z; > 2.21 « -

@ © o° c=2.21
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Example: Monte Carlo integration

« R program to derive critical value based on Monte Carlo:
n <- le+4

rho <- 0.5

X <- matrix(rnorm(2*n), ncol = 2)

Yy <- cbind(x[,1], rho * x[,1] + sqrt(l-rho*2) * x[,2])
ym <- app ly (y , 1 , max) Row-Wise maximum in Julia: mapslices(maximum, y; dims=2)[:, 1];
yms <- sort (ym) in Python: np.max(y, axis=1); in Matlab: max(y, [], 2);

cv <- yms[round(n*0.975)]
cv

* Function gmvnorm in R-package mvtnorm can calculate/simulate this value, too

 In Julia, Matlab, and Python, there is no equivalent package like mvtnorm, and one
needs to implement the computation as above

library (mvtnorm)
gmvnorm(0.975, tail = "lower.tail", corr = matrix(c(1,0.5,0.5,1), ncol = 2))
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Importance sampling

A Monte Carlo estimator of [ h(x)f (x)dx is

1 n
e = — h(X,
Hmc ndais (Xi)
« Depending on h, not all X, equally relevant for this estimate

« We might want to focus more on certain X; and with this derive an
alternative Monte Carlo based estimator with reduced variance

 Idea:
* Since [ h(x)f(x)dx = [ h(x) ! (x) g(x)dx, sample according to another

density g which focuses on the important part of the sampling region

f(x)

» Correct estimate by weighting according to ——= e
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Importance sampling

* A Monte Carlo estimator of [ h(x)f (x)dx = [ h(x) ! (x g(x)dx is

== X
e =7 9 hCKD

« Importance sampling:
* Choose g focusing on important regions (aiming for g > f there,

elsew]
« Samp!

e Calcul

here g < f)

e according to g

_ . 1 i . . « Xi
ate ;s = 527{;1 h(Xi)W (Xi) with welghts 2% (Xi) = ‘];EXL;

22

« Important that it is possible to evaluate f and g and easy to sample from g
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Importance sampling

. s = %zyzl h(X;)w*(X;) with weights w*(X;) = ;g;

(/s is the sample mean of t(X;) = h(X))w*(X;),i = 1, ...,n)

* i} is an unbiased estimator of u = [ h(x)f(x)dx

 The variance of fijs is % with 6%, = | (h(x)w*(x) — u)?g(x) dx
(see Givens and Hoeting or Owen, Theorem 9.1)
=» an estimator for variance of fijs is % times sample variance of
t(X;)) =hX)w*X;),i=1,..,n

LINKOPING
II.“ UNIVERSITY



Advanced computational statistics L7 2025-05-16 24

Importance sampling - network analysis

» Network analysis: failure probabilities can be extremely small =
Importance sampling can be useful (Givens and Hoeting, example 6.9):

A network consists of nodes and edges (visualized by circles and lines)

 Each edge is intact with high probability but has a failure probability p,
which typically is small

« Whole network intact if endnode B reachable from startnode A via intact
edges, broken otherwise
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Importance sampling - network analysis

 Run n times:
« Simulate each edge (if intact or broken)
« Compute whether network intact or broken

« Problem: Only a few networks will be broken

 To decrease variance of estimator, simulate with failure-probabilities
p; > p; and use fijg
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Importance sampling - network example

« Example:

« Assume that p; = 0.05 for all edges

A function net computes if the network is intact (net (x) =1) or broken
(net (x)=0) for vector of edge-states x=(x,...,X,

» To decrease variance of estimator, simulate with failure-probabilities
p; > p; and use fijg

* We use here p; = 0.3
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Importance sampling - network example

sim <- 100000

totaledges <- 11

P <- 0.05

ps <- 0.3

simmat <- matrix(rbinom(sim*totaledges, size=1l, prob=l-ps), ncol=totaledges)
broken <- l-apply(simmat, 1, net)

nbrokenedg <- totaledges - rowSums (simmat)
w <- dbinom(nbrokenedg, size=totaledges, prob=p) /
dbinom (nbrokenedg, size=totaledges, prob=ps)

bhatIS <- mean (broken*w)
« We get here an estimate fi;; = 0.000781
* sd is 0.0000165 obtained by sqrt (var (broken*w) /sim)

* sd is lower by factor 5.9 compared to standard Monte Carlo estimate based on same
number of simulations

LINKOPING
II.“ UNIVERSITY



Advanced computational statistics L7 2025-05-16 28

Antithetic sampling

« Given a Monte Carlo estimator fi;-; = %Z?ﬂ h(X;), there might be
another [i,,-, which has same distribution and is negatively correlated (let
p = Corr(fyc1, fmcz))

» Then, fi s = (fiyc1 + Ayc2)/2 1S an estimator for same target variable and
has lower variance (factor HTP lower)

- Example: Let X be a symmetric random var. with mean 0.
Interest in calculating p = P(X > 1) by Monte Carlo simulations.

+ Use fycy = isg h(X) with h(X) = 1{x; > 1]

» The same distribution has fiyc, = %27{;1 h(X;) with h(X;) = 1{X; < -1}
(due to symmetry) and they are negatively correlated, p = —p/(1 — p)
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Importance and antithetic sampling - an example

« Example: Let X be a symmetric random var. with complicated density f
and calculate p = P(X > 1) by Monte Carlo simulation

* Use fiyc1 = %Z?:l h(X;) with

h(X;) = 1{X; > 1}
~ 1 ~ .

* Umcz = ;Z?ﬂ h(X;) with
h(X;) = 1{X; < —1}hasthe  ; _
same distribution i “

* We compute 2p = P(|X| > 1)
and will use importance

08
——
——

—h

_—

>

S

0.8
——
————

—r

_—

>

086
06

04

0
——

02
02

00
0.0

sampling for it
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Importance and antithetic sampling - an example

« For importance sampling, we want to oversample important regions and
undersample otherwise

* We use here a normal distribution with standarddeviation 2 as sampling

distribution g

@ f(4) v -

» The weightisthenw = f/g ﬂ" ﬁ“
f <- function(t) { o | -

ct <- (2+cos(t*(64/pi))) ) n

exp (-t*2) *ct/3.544909 g
} s 2 o
sim <- 1000000 “““ % “w f
y <- rnorm(sim,sd=2) S - - i
w <- f(y)/dnorm(y,sd=2) 9 __JJJJW
z <- (abs(y)>1)*w - | -] L0

mean (z) /2
[1] 0.07368936
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Importance and antithetic sampling - an example

z <- (abs(y)>1) *w
p <- mean(z)/2

p
[1] 0.07368936

« What is the uncertainty in this estimate?

0.8
|
—
— 3
e —h

* sd for the IS estimate of p:
sdIS <- sqgrt(var((y>1l)*w)/sim)
sdIS

[1] 0.000210754

* sd for the AS estimate of p: _ 0 w

rho <- -p/(1-p)
sd <- sdIS*(l+rho)/2

06

04

density

0.2
|

sd
[1] 9.699411e-05 - |
* 95% CI for p: (0.07350, 0.07388) SRR
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EX.: MC integration with importance sampling

« Going back to example with two
significance tests

e We fixnow ¢ = 2.21

* We are interested to compute
P(Z,>corZ,>c) q
with high precision using
importance sampling .

e Which importance functions g
would be good? g
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EX.: MC integration with importance sampling

e For illustration we use

V(O v -

5 = 1 for g (might be better ~ -
choices, t00)

* Draws in lower-left corner:
* less often sampled

 overweighted if sampled

 have lower precision (but 5 4
h = 0 there, so low precision _ _
is no problem) 2
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EX.: MC integration with importance sampling

e Standard deviation
1000 100 000

Ayec 0.0050 0.00049
fis 0.0020 0.00020

* n =100 000, fi;s = 0.02489

« Draws with weights above 4, N .
in [1,4], in [0.25,1), and below
0.25, respectively are in
different colors in picture | | ' ' |
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Importance sampling with standardized weights

« Importance sampling estimator with unstandardized weights of
[ RGOS )dx = [ h(x) 2 [ )g(x)dx is

f(X;)

fis = Z L h(X)w* (X;) with weights w*(X;) = 705

« Importance sampling estimator with standardized weights is

o _ f&x) AN A0
fis = Xizg h(X)w(X;) with w*(X;) = gXy)’ wXo) Xj=1 W (X))

* [i;s can be used if f known up to proportionality constant
* [I;s has a slight bias and variance more complicated
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Importance sampling with standardized weights

« Importance sampling estimator with standardized weights is

A \On ) . 1 * ) — f(Xi) L) = wo(Xq)
His = Zi:l h(Xl)W(Xl) with w (Xl) og(x)’ W(Xl) B Z?=1 W*(XJ')

* {1;s has a slight bias,
1 1
E(f;g —u) = - [,uVar(w*(X)) — Cov(t(X),W*(X))] + 0 (ﬁ) .
 Its variance is
Var(fi;s) = %[Var(t(X)) + u2Var(w* (X)) — 2uCov(t(X), w*(X))] + 0(1/n?).

» To estimate these quantities, one can use the sample statistics for w*(X) and
t(X) = h(X)w*(X) and replace u by its estimate
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